Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T23:22:45.706Z Has data issue: false hasContentIssue false

Closure operators

Published online by Cambridge University Press:  09 April 2009

P. J. Collyer
Affiliation:
University of Western AustraliaNedlands, 6009 Western Australia
R. P. Sullivan
Affiliation:
University of Western AustraliaNedlands, 6009 Western Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A mapping κ: P(X) → P(X) is a quasi-closure operator (see Thron (1966) page 44) if (i) □κ = □, and for all A, B ∈ P(X) we have (ii) AAκ, and (iii) (AB)κ = Aκ ∪ Bκ one easily deduces that such operators have the further property: (iv) if A ⊆ B ⊆ X, then Aκ if κ also satisfies: (v) Aκ2 ⊆ Aκ for all AX, then κ is called a Kuratowski closure operator.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1975

References

Banach, S. (1932), Théorie des Operations Linéares, (Warsaw 1932).Google Scholar
Birkhoff, G. (1967), Lattice Theory, 3rd Ed. (Amer. Math. Soc. New York 1967).Google Scholar
Clifford, A. H. and Preston, G. B. (1962), The Algebraic Theory of Semigroups, Vol. 1 (Amer. Math. Soc. New York 1962).Google Scholar
Collyer, P. J. (to appear), ‘Semigroups of closure operators’.Google Scholar
Frohlich, O. (1964), ‘Das Halbordnungssystem der topologischen Raume auf einer Menge’, Math. Ann. 156, 7995.CrossRefGoogle Scholar
Morgado, J. (1960), ‘Some results on closure operators of partially ordered sets’, Portugal. Math. 19, 101139.Google Scholar
Morgado, J. (1961), ‘Note on the automorphisms of the lattice of closure operators of a compete lattice’, Proc. Nederl. Akad. v. Wetensch. Ser. A64 = Indag. Math. 23, 211–128.CrossRefGoogle Scholar
Morgado, J. (1961a), ‘On the closure operators of the ordinal sum of partially ordered sets’, Proc. Nederl. Akad. Wetensch. Ser. A64 = Indag. Math. 23, 546550.CrossRefGoogle Scholar
Morgado, J. (1961b), ‘Quasi-isomorphisms between complete lattices’, Portugal. Math. 20, 1731.Google Scholar
Morgado, J. (1963), ‘On the closure operators of the cardinal product of partially ordered sets’, Proc. Nederl. Akzd. v. Wetensch. Ser. A66 = Indag. Math. 25, 6575.CrossRefGoogle Scholar
Morgado, J. (1966), ‘Note on the factorization of the lattice of closure operators of a complete lattice’, Proc. Nederl. Akad. v. Wetensch Ser. A69 = Indag. Math. 28, 3441.CrossRefGoogle Scholar
Rutherford, D. E. (1965), Introduction to Lattice Theory, (Oliver and Boyd, Edinburgh 1965).Google Scholar
Sierpinski, W. (1958), Cardinal and ordinal numbers, (Polska Akademia Mauk, Monografic Mathematyczne Tom 34, Warsaw 1958).Google Scholar
Steiner, A. K. (1966), ‘The lattice of topologies: structure and complementation’, Trans. Amer. Math. Soc. 122, 379398.CrossRefGoogle Scholar
Sullivan, R. P. (to appear), ‘Sums and products of posets of quasi-closure operators’.Google Scholar
Sullivan, R. P. (1969), A study on the theory of transformation semigroups, (Ph. D. thesis, Monash University 1969).Google Scholar
Thron, W. J. (1966), Topological structures, (Holt, Rinehart and Winston, New York 1966).Google Scholar