Published online by Cambridge University Press: 09 April 2009
We study the embeddings of a finite p-group U into Sylow p-subgroups of Sym (U) induced by the right regular representation p: U→ Sym(U). It turns out that there is a one-to-one correspondence between the chief series in U and the Sylow p-subgroups of Sym (U) containing Up. Here, the Sylow p-subgroup Pσ of Sym (U) correspoding to the chief series σ in U is characterized by the property that the intersections of Up with the terms of any chief series in Pσ form σp. Moreover, we see that p: U→ Pσ are precisely the kinds of embeddings used in a previous paper to construct the non-trivial countable algebraically closed locally finite p-groups as direct limits of finite p-groups.