Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T18:15:46.306Z Has data issue: false hasContentIssue false

A Characterization of the finite simple group U4(3)

Published online by Cambridge University Press:  09 April 2009

Kok-Wee Phan
Affiliation:
Department of Mathematics Monash UniversityClayton, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to give a characterization of the finite simple group U4(3) i.e. the 4-dimensional projective special unitary group over the field of 9 elements. More precisely, we shall prove the following result.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1969

References

[1]Artin, E., Geometric Algebra, Wiley-Interscience (1957).Google Scholar
[2]Brauer, R. and Suzuki, M., ‘On finite groups of even order whose 2-Sylow group is a quaternion group’, Proc. Nat. Acad. Sci.. U.S.A. 45 (1959), 17571759.CrossRefGoogle Scholar
[3]Gorenstein, D. and Walter, J. H., ‘On finite groups with dihedral Sylow 2-subgroups’, Illinois J. Math. 6 (1962) 553593.CrossRefGoogle Scholar
[4]Hall, M., The Theory of Groups, (Fifth Printing 1964).Google Scholar
[5]Higman, G. and Hall, P., ‘The ρ-length of a ρ-soluble group and reduction theorems for Burnside's problem’, Proc. London Math. Soc. (3), 7 (1956), 142.Google Scholar
[6]Janko, Z., ‘A characterization of the finite simple group PSρ4(3)’, (to appear).Google Scholar
[7]Thompson, J. G., ‘Non-solvable finite groups whose non-identity solvable subgroups have solvable normalizers’ (to appear).Google Scholar
[8]Tits, M. Jacques, ‘Theorème de Bruhat et sous-groupes paraboliques’, C. R. Acad. Sci. Paris, 254 (1962), 29102912.Google Scholar
[9]Suzuki, M., ‘On Characterization of linear groups’, I. Trans. Amer. Math. Soc. 92 (1959).Google Scholar
[10]Wielandt, H., Beziehungen zwischen Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe', Math. Zeit. 73, 146158 (1960).CrossRefGoogle Scholar