Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T02:17:47.177Z Has data issue: false hasContentIssue false

CHARACTERIZATION OF PROJECTIVE QUANTALES

Published online by Cambridge University Press:  08 January 2016

WOLFGANG RUMP*
Affiliation:
Institute for Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that a quantale is projective if and only if it is isomorphic to a derived tensor quantale over a completely distributive sup-lattice. Furthermore, an intrinsic characterization of projectivity is given in terms of inertial sup-lattices and derivations of quantales.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Abramsky, S. and Vickers, S., ‘Quantales, observational logic and process semantics’, Math. Structures Comput. Sci. 3(2) (1993), 161227.Google Scholar
Banaschewski, B., ‘On the topologies of injective spaces’, in: Continuous Lattices and their Applications (Bremen, 1982), Lecture Notes in Pure and Applied Mathematics, 101 (Dekker, New York, 1985), 18.Google Scholar
Banaschewski, B., ‘Projective frames: a general view’, Cah. Topol. Géom. Différ. Catég. 46(4) (2005), 301312.Google Scholar
Banaschewski, B. and Niefield, S. B., ‘Projective and supercoherent frames’, J. Pure Appl. Algebra 70(1–2) (1991), 4551.CrossRefGoogle Scholar
Borceux, F. and van den Bossche, G., ‘An essay on noncommutative topology’, Topology Appl. 31(3) (1989), 203223.Google Scholar
Borceux, F., Rosický, J. and Van den Bossche, G., ‘Quantales and C -algebras’, J. Lond. Math. Soc. (2) 40(3) (1989), 398404.Google Scholar
Connes, A., Noncommutative Geometry (Academic Press, San Diego, CA, 1994).Google Scholar
Coniglio, M. E. and Miraglia, F., ‘Non-commutative topology and quantales’, Stud. Log. 65(2) (2000), 223236.Google Scholar
Girard, J.-Y., ‘Linear logic’, Theoret. Comput. Sci. 50 (1987), 1102.CrossRefGoogle Scholar
Joyal, A. and Tierney, M., ‘An extension of the Galois theory of Grothendieck’, Mem. Amer. Math. Soc. 51(309) (1984), vii+71 pages.Google Scholar
Kruml, D., Pelletier, J. W., Resende, P. and Rosický, J., ‘On quantales and spectra of C -algebras’, Appl. Categ. Structures 11(6) (2003), 543560.Google Scholar
Kruml, D. and Paseka, J., ‘Algebraic and categorical aspects of quantales’, in: Handbook of Algebra, Vol. 5 (Elsevier/North-Holland, Amsterdam, 2008), 323362.Google Scholar
Kruml, D. and Resende, P., ‘On quantales that classify C -algebras’, Cah. Topol. Géom. Différ. Catég. 45(4) (2004), 287296.Google Scholar
Li, Y.-M., Zhou, M. and Li, Z.-H., ‘Projective and injective objects in the category of quantales’, J. Pure Appl. Algebra 176(2–3) (2002), 249258.Google Scholar
Mac Lane, S., Categories for the Working Mathematician (Springer, New York, 1971).Google Scholar
Mulvey, C. J., ‘Second topology conference (Taormina, 1984)’, Rend. Circ. Mat. Palermo (2) Suppl. (12) (1986), 99104.Google Scholar
Mulvey, C. J. and Pelletier, J. W., ‘On the quantisation of points’, J. Pure Appl. Algebra 159(2–3) (2001), 231295.Google Scholar
Mulvey, C. J. and Pelletier, J. W., ‘On the quantisation of spaces, Special volume celebrating the 70th birthday of Professor Max Kelly’, J. Pure Appl. Algebra 175(1–3) (2002), 289325.Google Scholar
Mulvey, C. J. and Resende, P., ‘A noncommutative theory of Penrose tilings’, Internat. J. Theoret. Phys. 44(6) (2005), 655689.Google Scholar
Niefield, S. B., ‘Exactness and projectivity’, in: Category Theory (Gummersbach, 1981), Lecture Notes in Mathematics, 962 (Springer, Berlin, 1982), 221227.Google Scholar
Paseka, J., ‘Projective quantales: a general view’, Internat. J. Theoret. Phys. 47(1) (2008), 291296.Google Scholar
Resende, P., ‘Quantales, finite observations and strong bisimulation’, Theoret. Comput. Sci. 254(1–2) (2001), 95149.CrossRefGoogle Scholar
Resende, P., ‘Étale groupoids and their quantales’, Adv. Math. 208(1) (2007), 147209.Google Scholar
Rosenthal, K. I., ‘A note on Girard quantales’, Cah. Topol. Géom. Différ. Catég. 31(1) (1990), 311.Google Scholar
Rosenthal, K. I., Quantales and their Applications, Pitman Research Notes in Mathematics Series, 234 (Longman Scientific & Technical, Harlow, 1990).Google Scholar
Rump, W., ‘Irreduzible und unzerlegbare Darstellungen klassischer Ordnungen’, Bayreuth. Math. Schriften 32 (1990), 1405.Google Scholar
Rump, W., ‘Inertial algebras, inertial bimodules, and projective covers of algebras’, Comm. Algebra 27(11) (1999), 53035331.Google Scholar
Scott, D., ‘Continuous lattices’, in: Toposes, Algebraic Geometry and Logic (Conf., Dalhousie Univ., Halifax, N. S., 1971), Lecture Notes in Mathematics, 274 (Springer, Berlin, 1972), 97136.Google Scholar
Stubbe, I., ‘Towards “dynamic domains”: totally continuous cocomplete Q-categories’, Theoret. Comput. Sci. 373(1–2) (2007), 142160.CrossRefGoogle Scholar
Yetter, D. N., ‘Quantales and (noncommutative) linear logic’, J. Symbolic Logic 55(1) (1990), 4164.CrossRefGoogle Scholar