No CrossRef data available.
Article contents
Cartan subalgebras of regular extensions of von Neumann algebras
Published online by Cambridge University Press: 09 April 2009
Abstract
We analyse the structure of a regular extension ℳ ⋊ γ, υQ of a von Neumann algebra ℳ by an action (modulo inner automorphisms) γ of a discrete group Q, and a nonabelian 2-cycle υ for γ, under the assumption that the “action” γ of Q is cocycle conjugate to an “action”, α which leaves globally invariant a cartan subalgebra of ℳ. we show that ℳ ⋊ γ, υQ is isomorphic with the algebra of the left regular projective representation of a certain discrete, non-principal groupoid ℜ V Q determined by the action of Q on the given cartan subalgebrs, where ℜ is the Takesaki relation associated to the pair (ℳ, ) we apply this description to give a decomposition of the regular representation of a group G into irreducibles, where G is a split extension of a type I group K by an abelian group Q, and work out the details of the author's earlier abstract plancherel theorem in the case when K is abelian.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1988