Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T07:52:00.664Z Has data issue: false hasContentIssue false

C2 building and projective space

Published online by Cambridge University Press:  09 April 2009

K. F. Lai
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the stability map from the rigid analytic space of semistable points in P3 to convex sets in the building of Sp2 over a local field and construct a pure affinoid covering of the space of stable points.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Bosch, S., Günther, U. and Remmert, R., Non-archimedian analysis (Springer, New York, Basel, 1984).CrossRefGoogle Scholar
[2]Fernel, J. and Van der Put, M., Géométrie analytique rigide et applications, Progress in Math. 18 (Birkhäuser, 1981).Google Scholar
[3]Flaschka, H. and Haine, L., ‘Torus orbits in G/P’, Pacific J. Math. 149 (1991), 251292.CrossRefGoogle Scholar
[4]Goldman, O. and Iwahori, N., ‘The space of p-adic norms’, Acta Math. 109 (1963), 137177.CrossRefGoogle Scholar
[5]Hsia, L.-C., ‘A weak Néron model with applications to p-adic dynamical systems’, Compositio Math. 100 (1996), 277304.Google Scholar
[6]Iversen, B., ‘The geometry ofr algebraic groupsAdv. Math. 20 (1976), 5785.CrossRefGoogle Scholar
[7]Kempf, G. R., ‘Linear systems on homogeneour spaces’, Ann. of Math. 103 (1976), 557591.CrossRefGoogle Scholar
[8]Kurihara, A., ‘Construction of p-adic unit balls and the Hirzebruch proportionalityAmer. J. Math. 102 (1980), 565648.CrossRefGoogle Scholar
[9]Moy, A., ‘Displacement functions in Bruhat-Tits buildings’, Proc. Sympos. Pure Math. 68 (2000), 483500.CrossRefGoogle Scholar
[10]Mumford, D., ‘An analytic construction of degenerating curves over complete local rings’, Compositio Math. 24 (1972), 129174.Google Scholar
[11]Mumford, D., Fogarty, J. and Kirwan, F., Geometric invariant theory (Springer, New York, 1994).CrossRefGoogle Scholar
[12]van der Put, M. and Voskuil, H., ‘Symmetric space associated to split algebraic groups over a local field’, J. Reine Angew. Math. 433 (1992), 69100.Google Scholar
[13]Rapoport, M., ‘Period domains over finite and local fields’, Proc. Sympos. Pure Math. 621 (1997), 361381.CrossRefGoogle Scholar
[14]Schneider, P. and Stuhler, U., ‘The cohomology of p-adic symmetric spaces’, Invent. Math. 105 (1991), 47122.CrossRefGoogle Scholar
[15]Tits, J., ‘Reductive groups over local fields’, Proc. Sympos. Pure Math. 33 (1979), 2969.CrossRefGoogle Scholar
[16]Voskuil, H., ‘On the action of the unitary group on the projective plane over a local field’, J. Austral. Math. Soc. (Series A) 62 (1997), 371397.CrossRefGoogle Scholar