Published online by Cambridge University Press: 09 April 2009
We introduce sign-preserving charges on the system of all orthogonally closed subspaces, F(S), of an inner product space S, and we show that it is always bounded on all the finite-dimensional subspaces whenever dim S = ∞. When S is finite-dimensional this is not true. This fact is used for a new completeness criterion showing that S is complete whenever F(S) admits at least one non-zero sign-preserving regular charge. In particular, every such charge is always completely additive.