Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T23:19:15.375Z Has data issue: false hasContentIssue false

BASIC FUNCTIONAL ANALYSIS PUZZLES OF SPECTRAL FLOW

Published online by Cambridge University Press:  19 July 2011

B. BOOSS-BAVNBEK*
Affiliation:
IMFUFA, Department of Sciences, Systems and Models, Roskilde University, Postboks 260, DK-4000 Roskilde, Denmark (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Axelsson, A., Keith, S. and McIntosh, A., ‘Quadratic estimates and functional calculi of perturbed Dirac operators’, Invent. Math. 163 (2006), 455497.CrossRefGoogle Scholar
[2]Benameur, M.-T., Carey, A. L., Phillips, J., Rennie, A., Sukochev, F. A. and Wojciechowski, K. P., ‘An analytic approach to spectral flow in von Neumann algebras’, in: Analysis, Geometry and Topology of Elliptic Operators, (eds. Booß-Bavnbek, B.et al.) (World Scientific, Hackensack, NJ, 2006), pp. 297352.CrossRefGoogle Scholar
[3]Booß-Bavnbek, B., Chen, G., Lesch, M. and Zhu, C., ‘Perturbation of sectorial projections of elliptic pseudo-differential operators’, Preprint, Roskilde and Tianjin 2010, 31 pages, arXiv:1101.0067v2 [math.SP].Google Scholar
[4]Booß-Bavnbek, B. and Furutani, K., ‘The Maslov index: a functional analytical definition and the spectral flow formula’, Tokyo J. Math. 21 (1998), 134.Google Scholar
[5]Booß-Bavnbek, B. and Lesch, M., ‘The invertible double of elliptic operators’, Lett. Math. Phys. 87(1–2) (2009), 1946.CrossRefGoogle Scholar
[6]Booß-Bavnbek, B., Lesch, M. and Phillips, J., ‘Unbounded Fredholm operators and spectral flow’, Canad. J. Math. 57(2) (2005), 225250.CrossRefGoogle Scholar
[7]Booß-Bavnbek, B., Lesch, M. and Zhu, C., ‘The Calderón projection: new definition and applications’, J. Geom. Phys. 59 (2009), 784826.CrossRefGoogle Scholar
[8]Booß-Bavnbek, B., Marcolli, M. and Wang, B. L., ‘Weak UCP and perturbed monopole equations’, Internat. J. Math. 13(9) (2002), 9871008.Google Scholar
[9]Booß-Bavnbek, B. and Wojciechowski, K. P., Elliptic Boundary Problems for Dirac Operators (Birkhäuser, Basel, 1993).Google Scholar
[10]Booß-Bavnbek, B. and Zhu, C., ‘The Maslov index in weak symplectic functional analysis’, Preprint, Roskilde 2010, 31 pages, see also arXiv:math/0406139v1 [math.DG] and arXiv:math/0504125v2 [math.DG].Google Scholar
[11]Burak, T., ‘On spectral projections of elliptic operators’, Ann. Sc. Norm. Super. Pisa (3) 24 (1970), 209230.Google Scholar
[12]Cordes, H. O. and Labrousse, J. P., ‘The invariance of the index in the metric space of closed operators’, J. Math. Mech. 12 (1963), 693719.Google Scholar
[13]Courant, R. and Hilbert, D., Methods of Mathematical Physics I and II (Interscience, New York, 1953/1962), translated from German.Google Scholar
[14]Eichhorn, J., ‘Index theory for generalized Dirac operators on open manifolds’, in: C*-algebras and Elliptic Theory, Trends in Mathematics (Birkhäuser, Basel, 2006), pp. 73128.Google Scholar
[15]Gesztesy, F., Latushkin, Y., Makarov, K. A., Sukochev, F. and Tomilov, Y., ‘The index formula and the spectral shift function for relatively trace class perturbations’, Adv. Math. 227 (2011), 319420.Google Scholar
[16]Himpel, B., Kirk, P. and Lesch, M., ‘Calderón projector for the Hessian of the Chern–Simons function on a 3-manifold with boundary’, Proc. Lond. Math. Soc. (3) 89 (2004), 241272.CrossRefGoogle Scholar
[17]Kalf, H., ‘Günter Hellwig—in memoriam’, Sitzungsberichte der Berliner Mathematischen Gesellschaft, to appear.Google Scholar
[18]Kirk, P. and Lesch, M., ‘The η-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary’, Forum Math. 16 (2004), 553629.Google Scholar
[19]Lagrange, J. L., ‘Letter to Euler 12 August 1755’ (Latin), in: Oeuvres de Lagrange, 14 (eds. J. A. Serret, G. Darboux) (Gauthier-Villars, Paris, 1892), pp. 366–375.Google Scholar
[20]Manin, Y., ‘Mathematical knowledge: internal, social and cultural aspects’, in: Mathematics as Metaphor: Selected Essays of Yuri I. Manin with Foreword by Freeman J. Dyson (American Mathematical Society, Providence, RI, 2007), pp. 326.Google Scholar
[21]Ponge, R., ‘Spectral asymmetry, zeta functions, and the noncommutative residue’, Internat. J. Math. 17 (2006), 10651090.Google Scholar
[22]Seeley, R. T., ‘Singular integrals and boundary value problems’, Amer. J. Math. 88 (1966), 781809.CrossRefGoogle Scholar
[23]Seeley, R. T., ‘Topics in pseudo-differential operators’, in: C.I.M.E., Conference on Pseudo-differential Operators 1968 (Edizioni Cremonese, Roma, 1969), pp. 169305.Google Scholar