Published online by Cambridge University Press: 09 April 2009
Let be the classical system of the Walsh functions, the multiplicative semigroup of the functions represented by series of functions Wk(t)with non-negative coefficients which sum equals 1. We study the arithmetic of . The analogues of the well-known [ related to the arithmetic of the convolution semigroup of probability measures on the real line are valid in . The classes of idempotent elements, of infinitely divisible elements, of elements without indecomposable factors, and of elements without indecomposable and non-degenerate idempotent factors are completely described. We study also the class of indecomposable elements. Our method is based on the following fact: is isomorphic to the semigroup of probability measures on the groups of characters of the Cantor-Walsh group.