Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T00:38:57.306Z Has data issue: false hasContentIssue false

Applications of p-adic interpolation to exponential polynomials and sums of powers

Published online by Cambridge University Press:  09 April 2009

Vichian Laohakosol
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A.
Jane Pitman
Affiliation:
Department of Mathematics, University of Adelaide, Adelaide, South Australia 5001, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An approach to p-adic interpolation via divided differences is used to give alternative proofs of results of van der Poorten on p-adic exponential polynomials and to derive a p-adic analogue of Turan's first main theorem on sums of powers.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

Adams, W. W. (1966), ‘Transcendental numbers in the p-adic domain’, Amer. J. Math. 88, 279308.CrossRefGoogle Scholar
Adams, W. W. and Straus, E. G. (1971), ‘Non-archimedian analytic functions taking the same value at the same points’, Illinois J. Math. 15, 418424.CrossRefGoogle Scholar
Bachman, G. (1964), Introduction to p-adic numbers and valuation theory (Academic Press, New York).Google Scholar
Baker, A. (1975), Transcendental number theory (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Balkema, A. A. and Tijdeman, R. (1973), ‘Some estimates in the theory of exponential sums’, Acta. Math. Acad. Sci. Hungar. 24, 115133.CrossRefGoogle Scholar
de Bruijn, N. G. (1960), ‘On Turan's first main theorem’, Acta Math. Acad. Sci. Hungar. 11, 213216.CrossRefGoogle Scholar
Gelfond, A. O. (1960), Transcendental and algebraic numbers (Dover, New York).Google Scholar
Gelfond, A. O. (1971), Calculus of finite differences (Hindustan Publishing Corporation, Delhi).Google Scholar
Koblitz, N. (1977), P-adic numbers, p-adic analysis and zeta functions (Springer, New York).CrossRefGoogle Scholar
Laohakosol, V. (1978), Two topics in p-adic approximation (M.Sc. Thesis, University of Adelaide, South Australia).Google Scholar
Mahler, K. (1967), ‘On a class of entire functions’, Acta Math. Acad. Sci. Hungar. 18, 8396.CrossRefGoogle Scholar
Makai, E. (1959), ‘The first main theorem of Turan’, Acta Math. Acad. Sci. Hungar. 10, 405411.CrossRefGoogle Scholar
Robba, P. (1977), ‘Nombre de zéros des fonctions exponentielles-polynōmes’, Groupe d'étude d'Analyse ultramétrique 4e année, no. 9, pp. 13 (Secrétariat Mathématique, Paris).Google Scholar
Shorey, T. N. (1972a), ‘Algebraic independence of certain numbers in the p-adic domain’, Nederl. Akad. Wetensch. Proc. Ser. A. 75, 423435 (= Indag. Math. 34, 423–435).CrossRefGoogle Scholar
Shorey, T. N. (1972b), ‘P-adic analogue of a theorem of Tijdeman and its application’, Nederl. Akad. Wetensch. Proc. Ser. A. 75, 436442 (= Indag. Math. 34, 436–442).CrossRefGoogle Scholar
van der Poorten, A. J. (1976a), ‘Zeros of p-adic exponential polynomials’, Nederl. Akad. Wetensch. Proc. Ser. A. 79, 4649 (= Indag. Math. 38, 46–49).CrossRefGoogle Scholar
van der Poorten, A. J. (1976b), ‘Hermite interpolation and p-adic exponential polynomials’, J. Austral. Math. Soc. Ser. A. 22, 1226.CrossRefGoogle Scholar
van der Poorten, A. J. (1977), ‘On the number of zeros of functions’, Enseignement Math. 23, 1938.Google Scholar