Article contents
ANALYTIC PROPERTIES OF MIRROR MAPS
Published online by Cambridge University Press: 22 November 2012
Abstract
We consider a multi-parameter family of canonical coordinates and mirror maps originally introduced by Zudilin. This family includes many of the known one-variable mirror maps as special cases, in particular many of modular origin and the celebrated ‘quintic’ example of Candelas, de la Ossa, Green and Parkes. In a previous paper, we proved that all coefficients in the Taylor expansions at 0 of these canonical coordinates (and, hence, of the corresponding mirror maps) are integers. Here we prove that all coefficients in their Taylor expansions at 0 are positive. Furthermore, we provide several results about the behaviour of the canonical coordinates and mirror maps as complex functions. In particular, we address their analytic continuation, points of singularity, and radius of covergence. We present several very precise conjectures on the radius of covergence of the mirror maps and the sign pattern of the coefficients in their Taylor expansions at 0.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Publishing Association Inc. 2012
Footnotes
The research of the first author was partially supported by the Austrian Science Foundation FWF, grants Z130-N13 and S9607-N13, the latter in the framework of the National Research Network ‘Analytic Combinatorics and Probabilistic Number Theory’. The research of the second author was partially supported by the project Q-DIFF, ANR-10-JCJC-0105, of the French ‘Agence Nationale de la Recherche’.
References
- 2
- Cited by