No CrossRef data available.
Article contents
An analogue of the Hadamard conjecture for n × n matrices with n ≡2 (mod 4)
Published online by Cambridge University Press: 09 April 2009
Abstract
It is known that the problem of settling the existence of an n × n Hadamard matrix, where n is divisible by 4, is equivalent to that of finding the cardinality of a smallest set T of 4-circuits in the complete bipartite graph Kn, n such that T contains at least one circuit of each copy of K2,3 in Kn, n. Here we investigate the case where n ≡ 2 (mod 4), and we show that the problem of finding the cardinality of T is equivalent to that of settling the existence of a certain kind of n × n matrix. Moreover, we show that the case where n ≡ 2 (mod 4) differs from that where n ≡ 0 (mod 4) in that the problem of finding the cardinality of T is not equivalent to that of maximising the determinant of an n × n (1,-1)-matrix.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1987