Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T17:03:29.603Z Has data issue: false hasContentIssue false

Altitudes of a general n–simplex*

Published online by Cambridge University Press:  09 April 2009

Sahib Ram Mandan
Affiliation:
Indian Institute of Technology, Kharagpur
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to prove that the altitudes of an n-simplex (a simplexin an n-space) S form an associated set of n+1 lines (see Baker, [4] for n = 4) such that any (n–2)-space meeting n of them meets the (n+1)th too. As an immediate consequence 2 quadrics are associated with S, one touching its primes at the respective feet of its altitudes and the other touching n(n+1) primes, n parallel to each of its altitudes and 2 through each of its (n−2)-spaces. Certain special cases are also mentioned.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1965

References

[1],[2],[3],[4].Baker, H. F., Principles of geometry, Vols. 1, 2, 3, 4 (Cambridge, 1922, 1922, 1923, 1925).Google Scholar
[5]Baker, H. F., Polarities for the nodes of a Segre's cubic primal in space of four dimensions, Proc. Camb. Phil. Soc. 32 (1936), 507520.CrossRefGoogle Scholar
[6]Beatty, S., Advanced problem 4079, Amer. Math. Monthly 50 (1943), 264.Google Scholar
[7]Court, N. A., Modern pure solid geometry (New York, 1935).Google Scholar
[8]Court, N. A., The tetrahedron and its altitudes, Scripta Math. 14 (1948), 8597.Google Scholar
[9]Court, N. A., Pascal's theorem in space, Duke Math. J. 20 (1953), 417420.CrossRefGoogle Scholar
[10]Court, N. A., Sur les tetraèdres circonscrits par les arêtes à une quadrique, Mathesis 63 (1954), 1218.Google Scholar
[11]Court, N. A., Sur la transformation isotomique, Mathesis 66 (1957), 291297.Google Scholar
[12]Coxeter, H. S. M., and Todd, J. A., Solution of advanced problem 4079, Amer. Math. Monthly 51 (1944), 599600.Google Scholar
[13]Mandan, S. R., An S-configuration in Euclideanand elliptic n-space, Canad. J. Math. 10 (1958), 489501.Google Scholar
[14]Mandan, S. R., Altitudes of a simplex in four dimensional space, Bull. Calcutta Math. Soc. 1958, Supplement, 820.Google Scholar
[15]Mandan, S. R., Semi-orthocentric and orthogonal simplexes in 4-space, Bull. Calcutta Math. Soc., 2129.Google Scholar
[16]Mandan, S. R., Altitudes of a general simplex in 4-space, Bull. Calcutta Math. Soc., 3441.Google Scholar
[17]Mandan, S. R., Polarity for a quadric in n-space, Istanbul Üniv. Fen. Fac. Mec. Ser. A 24 (1959), 2140.Google Scholar
[18]Mandan, S. R., Projective tetrahedra in a 4-space, J. Sci. Engrg. Res. 3 (1959), 169174.Google Scholar
[19]Mandan, S. R., Uni- and demi-orthocentric simplexes, J. Indian Math. Soc. (N.S.) 23 (1959), 169184.Google Scholar
[20]Mandan, S. R., Desargues' theorem in n-space, J. Australian Math. Soc. 1 (1959/1960) 311318.CrossRefGoogle Scholar
[21]Mandan, S. R., Cevian simplexes, Proc. Amer. Math. Soc. 11 (1960), 837845.CrossRefGoogle Scholar
[22]Mandan, S. R., A sphere-locus in an n-space, J. Sci. Engrg. Res. 4 (1960), 357361.Google Scholar
[23]Mandan, S. R., Isodynamic and isogonic simplexes, Ann. Mat. pura e appl. (4) 53 (1961), 4555.CrossRefGoogle Scholar
[24]Mandan, S. R., Orthic axes of the triangles of a simplex, J. Indian Math. Soc. (N.S.) 26 (1962), 1324.Google Scholar
[25]Mandan, S. R., Director hypersphere, Math. Student 30 (1962), 1317.Google Scholar
[26]Mandan, S. R., Orthogonal hyperspheres, Acta Math. Acad. Sci. Hungar. 13 (1962), 2534.CrossRefGoogle Scholar
[27]Mandan, S. R., Projective n-simplexes in [2n−2], Acta Math. Acad. Sci. Hungar., 12 (1961), 315319.CrossRefGoogle Scholar
[28]Mandan, S. R., Altitudes of a simplex in n-space, J. Australian Math. Soc. 2 (1961/1962), 403424.CrossRefGoogle Scholar
[29]Mandan, S. R., Pascal's theorem in n-space, J. Australian Math. Soc. 5 (1965), 401408.CrossRefGoogle Scholar
[30]Mandan, S. R., Semi-, Uni- and demi-isogonic and -Fermat simplexes, J. Sci. Engrg. Res. 5 (1961), 91110.Google Scholar
[31]Mandan, S. R., Polarity for a simplex.Google Scholar