Published online by Cambridge University Press: 23 November 2020
Infinite product operations are at the forefront of the study of homotopy groups of Peano continua and other locally path-connected spaces. In this paper, we define what it means for a space X to have infinitely commutative $\pi _1$ -operations at a point $x\in X$ . Using a characterization in terms of the Specker group, we identify several natural situations in which this property arises. Maintaining a topological viewpoint, we define the transfinite abelianization of a fundamental group at any set of points $A\subseteq X$ in a way that refines and extends previous work on the subject.
Communicated by George Willis