No CrossRef data available.
Published online by Cambridge University Press: 18 January 2021
This paper is a continuation of the paper, Matsumoto [‘Subshifts, $\lambda $ -graph bisystems and $C^*$ -algebras’, J. Math. Anal. Appl. 485 (2020), 123843]. A $\lambda $ -graph bisystem consists of a pair of two labeled Bratteli diagrams satisfying a certain compatibility condition on their edge labeling. For any two-sided subshift $\Lambda $ , there exists a $\lambda $ -graph bisystem satisfying a special property called the follower–predecessor compatibility condition. We construct an AF-algebra ${\mathcal {F}}_{\mathcal {L}}$ with shift automorphism $\rho _{\mathcal {L}}$ from a $\lambda $ -graph bisystem $({\mathcal {L}}^-,{\mathcal {L}}^+)$ , and define a $C^*$ -algebra ${\mathcal R}_{\mathcal {L}}$ by the crossed product . It is a two-sided subshift analogue of asymptotic Ruelle algebras constructed from Smale spaces. If $\lambda $ -graph bisystems come from two-sided subshifts, these $C^*$ -algebras are proved to be invariant under topological conjugacy of the underlying subshifts. We present a simplicity condition of the $C^*$ -algebra ${\mathcal R}_{\mathcal {L}}$ and the K-theory formulas of the $C^*$ -algebras ${\mathcal {F}}_{\mathcal {L}}$ and ${\mathcal R}_{\mathcal {L}}$ . The K-group for the AF-algebra ${\mathcal {F}}_{\mathcal {L}}$ is regarded as a two-sided extension of the dimension group of subshifts.
Communicated by Lisa Orloff Clark
The author was supported by JSPS KAKENHI Grant Nos. 15K04896 and 19K03537.