Article contents
0-dimensional compactifications and Boolean rings
Published online by Cambridge University Press: 09 April 2009
Extract
A subset of a topological space which is both closed and open is referred to as a clopen subset. Here, a 0-dimensional space is a Hausdorff space which has a basis of clopen sets. Here, a 0-dimensional space is a Hausdorff space which has a basis of clopen sets. By a compactification αX of a completely regular Hausdorff space X, we mean any compact space which contains X as a dense subspace. Two compactifications αX and γX are regarded as being equivalent if there exists a homeomorphism from αX onto γX which keeps X pointwise fixed. We will not distinguish between equivalent compactifications. With this convention, we can partially order any family of compactifications of X by defining αX ≧ γX if there exists a continuous mapping from γX onto αX which leaves X pointwise fixed. This paper is concerned with the study of the partially ordered family [X] of all 0-dimensional compactifications of a 0-dimensional space X.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1968
References
- 11
- Cited by