Article contents
YET ANOTHER IDEAL VERSION OF THE BOUNDING NUMBER
Published online by Cambridge University Press: 13 September 2021
Abstract
Let
$\mathcal {I}$
be an ideal on
$\omega $
. For
$f,\,g\in \omega ^{\omega }$
we write
$f \leq _{\mathcal {I}} g$
if
$f(n) \leq g(n)$
for all
$n\in \omega \setminus A$
with some
$A\in \mathcal {I}$
. Moreover, we denote
$\mathcal {D}_{\mathcal {I}}=\{f\in \omega ^{\omega }: f^{-1}[\{n\}]\in \mathcal {I} \text { for every } n\in \omega \}$
(in particular,
$\mathcal {D}_{\mathrm {Fin}}$
denotes the family of all finite-to-one functions).
We examine cardinal numbers
$\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))$
and
$\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathrm {Fin}}\times \mathcal {D}_{\mathrm {Fin}}))$
describing the smallest sizes of unbounded from below with respect to the order
$\leq _{\mathcal {I}}$
sets in
$\mathcal {D}_{\mathrm {Fin}}$
and
$\mathcal {D}_{\mathcal {I}}$
, respectively. For a maximal ideal
$\mathcal {I}$
, these cardinals were investigated by M. Canjar in connection with coinitial and cofinal subsets of the ultrapowers.
We show that
$\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathrm {Fin}} \times \mathcal {D}_{\mathrm {Fin}})) =\mathfrak {b}$
for all ideals
$\mathcal {I}$
with the Baire property and that
$\aleph _1 \leq \mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}})) \leq \mathfrak {b}$
for all coanalytic weak P-ideals (this class contains all
$\bf {\Pi ^0_4}$
ideals). What is more, we give examples of Borel (even
$\bf {\Sigma ^0_2}$
) ideals
$\mathcal {I}$
with
$\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))=\mathfrak {b}$
as well as with
$\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}})) =\aleph _1$
.
We also study cardinals
$\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {J}} \times \mathcal {D}_{\mathcal {K}}))$
describing the smallest sizes of sets in
$\mathcal {D}_{\mathcal {K}}$
not bounded from below with respect to the preorder
$\leq _{\mathcal {I}}$
by any member of
$\mathcal {D}_{\mathcal {J}}\!$
. Our research is partially motivated by the study of ideal-QN-spaces: those cardinals describe the smallest size of a space which is not ideal-QN.
Keywords
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1514.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1515.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1516.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1517.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1518.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1519.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1520.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1521.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1522.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1523.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1524.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220908201216861-0586:S0022481221000694:S0022481221000694_inline1525.png?pub-status=live)
- 1
- Cited by