Published online by Cambridge University Press: 12 March 2014
In this paper we prove that the word problem for division rings is recursively unsolvable. Our proof relies on the corresponding result for groups [7], [28], and makes essential use of P. M. Cohn's recent work [11], [13], [15], [16] on division rings.
The word problem for groups is usually formulated in terms of group presentations or finitely presented groups, as in [7], [24], [28], [30]. An equivalent formulation, in terms of the universal Horn sentences of group theory, is mentioned in [32]. This formulation makes sense for arbitrary first-order theories, and it is with respect to this formulation that we show that the word problem for division rings has degree 0′.