No CrossRef data available.
Article contents
Universally Baire sets and definable well-orderings of the reals
Published online by Cambridge University Press: 12 March 2014
Abstract
Let n ≥ 3 be an integer. We show that it is consistent (relative to the consistency of n − 2 strong cardinals) that every Σ1n-set of reals is universally Baire yet there is a (lightface) projective well-ordering of the reals. The proof uses “David's trick” in the presence of inner models with strong cardinals.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2003
References
REFERENCES
[1]
David, R., Δ3
1 reals. Annals of Mathematical Logic, vol. 23 (1982), pp. 121–125.CrossRefGoogle Scholar
[2]
David, R., A very absolute Π2
1-singleton, Annals of Mathematical Logic, vol. 23 (1982), pp. 101–120.CrossRefGoogle Scholar
[3]
Feng, Q., Magidor, M., and Woodin, H., Universally Baire sets of reals, Set theory of the continuum (Judan,
et al., editors), Mathematical Sciences Research Institute Publications, vol. 26, Springer Verlag, 1992, pp. 203–242.CrossRefGoogle Scholar
[4]
Friedman, S. D., David's trick, Proceedings of the 1997 asl summer meeting at leeds, vol. 258, Cambridge University Press, 1999, pp. 67–71.Google Scholar
[5[
Friedman, S. D., Fine structure and class forcing, de Gruyter Series in Logic and its Applications, vol. 3, Walter de Gruyter & Co., Berlin, New York, 2000.CrossRefGoogle Scholar
[7]
Hauser, K., The consistency strength of projective absoluteness, Annals of Pure and Applied Logic, vol. 74 (1995), pp. 245–295.CrossRefGoogle Scholar
[8]
Hauser, K. and Schindler, R.-D., Projective uniformization revisited, Annals of Pure and Applied Logic, vol. 103 (2000), pp. 109–153.CrossRefGoogle Scholar
[10]
Kechris, A. S. and Moschovakis, Y. N., Notes on the theory of scales, Cabal seminar 76–77 (Kechris, A. S. and Moschovakis, Y. N., editors), Lecture Notes in Math., vol. 689, Berlin, 1978, pp. 1–53.CrossRefGoogle Scholar
[11]
Martin, D. A. and Solovay, R. M., A basis theorem for Σ3
1 sets of reals, Annals of Mathematics, vol. 89 (1969), pp. 138–160.CrossRefGoogle Scholar
[12]
Mitchell, W. and Steel, J., Fine structure and iteration trees, Lecture Notes in Logic, vol. 3, Springer-Verlag, Berlin, 1994.CrossRefGoogle Scholar
[13]
Schindler, R., The core model for almost linear iterations, Annals of Pure and Applied Logic, vol. 116 (2002), pp. 207–274.CrossRefGoogle Scholar
[14]
Steel, J. R., Projectively well-ordered inner models, Annals of Pure and Applied Logic, vol. 74 (1995), pp. 77–104.CrossRefGoogle Scholar
[15]
Steel, J. R., The core model iterability problem, Lecture Notes in Logic, vol. 8, Springer-Verlag, Berlin, 1996.CrossRefGoogle Scholar
[16]
Woodin, H., On the consistency strength of projective uniformization, Logic colloquium 81 (Amsterdam) (Stern, J., editor), North-Holland, 1982, pp. 365–383.Google Scholar