Article contents
Undecidable properties of finite sets of equations
Published online by Cambridge University Press: 12 March 2014
Extract
Though equations are among the simplest sentences available in a first order language, many of the most familiar notions from algebra can be expressed by sets of equations. It is the task of this paper to expose techniques and theorems that can be used to establish that many collections of finite sets of equations characterized by common algebraic or logical properties fail to be recursive. The following theorem is typical.
Theorem. In a language provided with an operation symbol of rank at least two, the collection of finite irredundant sets of equations is not recursive.
Theorems of this kind are part of a pattern of research into decision problems in equational logic. This pattern finds its origins in the works of Markov [8] and Post [20] and in Tarski's development of the theory of relation algebras; see Chin [1], Chin and Tarski [2], and Tarski [23]. The papers of Mal′cev [7] and Perkins [16] are more directly connected with the present paper, which includes generalization of much of Perkins' work as well as extensions of a theorem of D. Smith [22]. V. L. Murskii [14] contains some of the results below discovered independently. Not all known results concerning undecidable properties of finite sets of equations seem to be susceptible to the methods presented here. R. McKenzie, for example, shows in [9] that for a language with an operation symbol of rank at least two, the collection of finite sets of equations with nontrivial finite models is not recursive. D. Pigozzi has extended and elaborated the techniques of this paper in [17], [18], and [19] to obtain new results concerning undecidable properties, particularly those of algebraic character.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1976
Footnotes
I would like to thank the referee for his patient reading of an earlier version of this paper and for pointing out several misstatements in that version.
References
REFERENCES
- 12
- Cited by