Article contents
Undecidable extensions of Skolem arithmetic
Published online by Cambridge University Press: 12 March 2014
Abstract
Let be the restriction of usual order relation to integers which are primes or squares of primes, and let ⊥ denote the coprimeness predicate. The elementary theory of is undecidable. Now denote by <π the restriction of order to primary numbers. All arithmetical relations restricted to primary numbers are definable in the structure (ℕ; ⊥, <π). Furthermore, the structures (ℕ; ∣, <π) (ℕ; =, ×, <π) and (ℕ; =, +, ×) are interdefinable.
Résumé
Soit la restriction de l'ordre usuel aux entiers qui sont premiers ou carrés de premiers, et soit ⊥ le prédicat de coprimarité. La théorie élémentaire de est indécidable. Soit maintenant <π l'ordre restreint aux entiers primaires. Toute relation arithmétique restreinte aux entiers primaires est définissable dans la structure (ℕ; ⊥, <π). De plus, les structures (ℕ; ∣, <π) (ℕ; =, ×, <π) et (ℕ; =, +, ×) sont inter-définissables.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1998
References
REFERENCES
- 7
- Cited by