Article contents
THE UNDECIDABILITY OF THE DEFINABILITY OF PRINCIPAL SUBCONGRUENCES
Published online by Cambridge University Press: 22 April 2015
Abstract
For each Turing machine ${\cal T}$, we construct an algebra $\mathbb{A}$′$\left( {\cal T} \right)$ such that the variety generated by $\mathbb{A}$′$\left( {\cal T} \right)$ has definable principal subcongruences if and only if ${\cal T}$ halts, thus proving that the property of having definable principal subcongruences is undecidable for a finite algebra. A consequence of this is that there is no algorithm that takes as input a finite algebra and decides whether that algebra is finitely based.
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2015
References
REFERENCES
- 2
- Cited by