Published online by Cambridge University Press: 12 March 2014
A bounded ultrasheaf is a nonstandard universe constructed from a superstructure in a Boolean valued model of set theory. We consider the bounded elementary embeddings between bounded ultrasheaves. Then the standardization principle is true if and only if the ultrafilters are comparable by the Rudin-Frolik order. The base concept is that the bounded elementary embeddings correspond to the complete Boolean homomorphisms. We represent this by the Rudin-Keisler order of ultrafilters of Boolean algebras.