Published online by Cambridge University Press: 12 March 2014
In [5], we studied the relational systems /Ā obtained from the recursive functions of one variable by identifying two such functions if they are equal for all but finitely many х ∈ Ā, where Ā is an r-cohesive set. The relational systems /Ā with addition and multiplication defined pointwise on them, were once thought to be potential candidates for nonstandard models of arithmetic. This, however, turned out not to be the case, as was shown by Feferman, Scott, and Tennenbaum [1]. We showed, letting A and B be r-maximal sets, and letting denote the complement of X, that /Ā and are elementarily equivalent (/Ā ≡ ) if there are r-maximal supersets C and D of A and B respectively such that C and D have the same many-one degree (C =mD). In fact, if A and B are maximal sets, /Ā ≡ if, and only if, A =mB. We wish to study the relationship between the elementary equivalence of /Ā and , and the Turing degrees of A and B.