Published online by Cambridge University Press: 12 March 2014
Myhill [12] extended the ideas of Shapiro [15], and proposed a system of epistemic set theory IST (based on modal S4 logic) in which the meaning of the necessity operator is taken to be the intuitive provability, as formalized in the system itself. In this setting one works in classical logic, and yet it is possible to make distinctions usually associated with intuitionism, e.g. a constructive existential quantifier can be expressed as (∃x) □ …. This was first confirmed when Goodman [7] proved that Shapiro's epistemic first order arithmetic is conservative over intuitionistic first order arithmetic via an extension of Gödel's modal interpretation [6] of intuitionistic logic.
Myhill showed that whenever a sentence □A ∨ □B is provable in IST, then A is provable in IST or B is provable in IST (the disjunction property), and that whenever a sentence ∃x.□A(x) is provable in IST, then so is A(t) for some closed term t (the existence property). He adapted the Friedman slash [4] to epistemic systems.
Goodman [8] used Epistemic Replacement to formulate a ZF-like strengthening of IST, and proved that it was a conservative extension of ZF and that it had the disjunction and existence properties. It was then shown in [13] that a slight extension of Goodman's system with the Epistemic Foundation (ZFER, cf. §1) suffices to interpret intuitionistic ZF set theory with Replacement (ZFIR, [10]). This is obtained by extending Gödel's modal interpretation [6] of intuitionistic logic. ZFER still had the properties of Goodman's system mentioned above.