Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T12:00:15.323Z Has data issue: false hasContentIssue false

Some initial segments of the Rudin-Keisler ordering

Published online by Cambridge University Press:  12 March 2014

Andreas Blass*
Affiliation:
University of Michigan, Ann Arbor, Michigan 48109

Abstract

A 2-affable ultrafilter has only finitely many predecessors in the Rudin-Keisler ordering of isomorphism classes of ultrafilters over the natural numbers. If the continuum hypothesis is true, then there is an ℵ1-sequence of ultrafilters Dα such that the strict Rudin-Keisler predecessors of Dα are precisely the isomorphs of the Dβ's for β < α.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blass, A., Orderings of ultrafilters, Thesis, Harvard University, 1970.Google Scholar
[2]Blass, A., The Rudin-Keisler ordering of P-points, Transactions of the American Mathematical Society, vol. 179 (1973), pp. 145166.Google Scholar
[3]Blass, A., Amalgamation of nonstandard models of arithmetic, this Journal, vol. 42 (1977), pp. 372386.Google Scholar
[4]Daguenet, M., Rapport entre l'ensemble des ultrafiltres admettant un ultrafiltre donné pour image et l'ensemble des images de cet ultrafiltre, Commeutationes Mathematicae Unirersitatis Carolinae, vol. 16 (1975), pp. 99113.Google Scholar
[5]Daguenet, M., Ultrafiltres à la façon de Ramsey, Transactions of the American Mathematical Society, vol. 250 (1979), pp. 91120.Google Scholar
[6]Eck, W., Über Ultrafilter and Nichtstandardmodelle mit vorgeschriebener Verteilung der Konstellationen, Thesis, Freie Universität Berlin, 1976.Google Scholar
[7]Gillman, L. and Jerison, M., Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960.CrossRefGoogle Scholar
[8]Keisler, H. J., Ultraproducts and saturated models, Koninklijke Nederlandse Akademie von Wetenschappen Indagationes Mathematicae ex Actis Quibus Titulus, vol. 67 (1964), pp. 178186.Google Scholar
[9]Rudin, M. E., Partial orders on the types in βN, Transactions of the American Mathematical Society, vol. 155 (1971), pp. 353362.Google Scholar