Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T20:30:51.983Z Has data issue: false hasContentIssue false

Skolem reduction classes

Published online by Cambridge University Press:  12 March 2014

Warren D. Goldfarb
Affiliation:
Society of Fellows, Harvard University, Cambridge, Massachusetts 02138
Harry R. Lewis
Affiliation:
Society of Fellows, Harvard University, Cambridge, Massachusetts 02138

Extract

Among the earliest and best-known theorems on the decision problem is Skolem's result [7] that the class of all closed formulas with prefixes of the form ∀···∀∃···∃ is a reduction class for satisfiability for the whole of quantification theory. This result can be refined in various ways. If the Skolem prefix alone is considered, the best result [8] is that the ∀∀∀∃ class is a reduction class, for Gödel [3], Kalmár [4], and Schütte [6] showed the ∀∀∃···∃ class to be solvable. The purpose of this paper is to describe the more complex situation that arises when (Skolem) formulas are restricted with respect to the arguments of their atomic subformulas. Before stating our theorem, we must introduce some notation.

Let x, y1, y2, be distinct variables (we shall use v1, v2, ··· and w1, w2, ··· as metavariables ranging over these variables), and for each i ≥ 1 let Y(i) be the set {y1, ···, yi}. An atomic formula Pv1 ··· vk will be said to be {v1, ···, vk}-based. For any n ≥ 1, p ≥ 1, and any subsets Y1, ··· Yp of Y(n), let C(n, Y1, ···, Yp) be the class of all those closed formulas with prefix ∀y1 ··· ∀ynx such that each atomic subformula not containing the variable x is Yi-based for some i, 1 ≤ ip.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Berger, R., The undecidability of the domino problem, Memoirs of the American Mathematical Society, No. 66, 1966.Google Scholar
[2]Dreben, B. and Goldfarb, W. D., A systematic treatment of the decision problem (in preparation).Google Scholar
[3]Gödel, K., Ein Spezialfall des Entscheidungsproblems der theoretischen Logik, Ergebnisse eines mathematischen Kolloquiums, vol. 2 (1932), pp. 2728.Google Scholar
[4]Kalmár, L., Über die Erfüllbarkeit derjenigen Zahlausdrücke, welche in der Normalform zwei benachbarte Allzeichen enthalten, Mathematische Annalen, vol. 108 (1933), pp. 466484.CrossRefGoogle Scholar
[5]Makanin, G. S., Novii razreshimii sluchai problemi razresheniia ischisleniia predikatov pervoi stupeni, Formal'naia logika i metodologiia nauki, “Nauka,” Moscow, 1964.Google Scholar
[6]Schütte, K., Untersuchungen zum Entscheidungsproblem der mathematischen Logik, Mathematische Annalen, vol. 109 (1934), pp. 572603.CrossRefGoogle Scholar
[7]Skolem, T., Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnskapsselskapets Skrifter, Mat.-Naturv. Klasse 4, 1920.Google Scholar
[8]Surányi, J., Contributions to the reduction theory of the decision problem, second paper, Acta Mathematica Academiae Scientiarum Hungaricae, vol. 1 (1950), pp. 261270.CrossRefGoogle Scholar
[9]Wang, H., Dominoes and the ∀∃∀ case of the decision problem, Proceedings of a symposium on the mathematical theory of automata, Brooklyn Polytechnic Institute, 1962.Google Scholar