Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:43:52.847Z Has data issue: false hasContentIssue false

Simulating polyadic modal logics by monadic ones

Published online by Cambridge University Press:  12 March 2014

George Goguadze
Affiliation:
Faculty of Computer Science, University of Saarland, IM Stadwald/36.1, Saarbrücken, Germany, E-mail: [email protected]
Carla Piazza
Affiliation:
Dipartimento di Matematica e Infomatica, Università Degli Studi di Udine, Via Delle Scienze 206, I-33100 Udine, Italy Dipartimento di Informatica, Università ca' Foscari di Venezia, Via Torino 155, I-30172 Mestre, Italy, E-mail: [email protected]
Yde Venema
Affiliation:
Institute of Logic, Language and Computation, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands, E-mail: [email protected]

Abstract

We define an interpretation of modal languages with polyadic operators in modal languages that use monadic operators (diamonds) only. We also define a simulation operator which associates a logic Λsim in the diamond language with each logic Λ in the language with polyadic modal connectives. We prove that this simulation operator transfers several useful properties of modal logics, such as finite/recursive axiomatizability, frame completeness and the finite model property, canonicity and first-order definability.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]van Benthem, J., D'Agostino, G., Montanari, A., and Policriti, A., Modal deduction in second-order logic and set theory-I, Journal of Logic and Computation, vol. 7 (1997), no. 2, pp. 251265.CrossRefGoogle Scholar
[2]van Benthem, J., D'Agostino, G., Montanari, A., and Policriti, A., Modal deduction in second-order logic and set theory-II, Studia Logica, vol. 60 (1998), no. 3, pp. 387420.CrossRefGoogle Scholar
[3]Blackburn, P., de Rijke, M., and Venema, Y., Modal Logic, Cambridge Tracts in Computer Science, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
[4]de Rijke, M. (editor), Diamonds and defaults, Synthese Library, vol. 229, Kluwer Academic Publishers, 1993.CrossRefGoogle Scholar
[5]Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalküls, Ergebnisse eines Mathema¬tischen Kolloquiums, vol. 6 (1933), pp. 3940.Google Scholar
[6]Goldblatt, R.I., Varieties of complex algebras, Annals of Pure and Applied Logic, vol. 38 (1989), pp. 173241.CrossRefGoogle Scholar
[7]Hansen, M. R. and Zhou, C., Duration calculus: Logical foundations, Formal Aspects of Computing, vol. 9 (1997), pp. 283330.CrossRefGoogle Scholar
[8]Hirsch, R. and Hodkinson, I., Relation Algebras by Games, Studies in Logic, vol. 147, Elsevier, Amsterdam, 2002.Google Scholar
[9]B.Jónsson, and Tarski, A., Boolean algebras with operators, Part I, American Journal of Mathematics, vol. 73 (1952), pp. 891939.CrossRefGoogle Scholar
[10]Jónsson, B. and Tarski, A., Boolean algebras with operators, Part II, American Journal of Mathematics, vol. 74 (1952), pp. 127162.CrossRefGoogle Scholar
[11]Kracht, M., Tools and Techniques in Modal Logic, Studies in Logic, vol. 142, Elsevier, Amsterdam, 1999.CrossRefGoogle Scholar
[12]Kracht, M. and Wolter, F., Simulation and transfer results in modal logic: A survey, Studia Logica, vol. 59 (1997), pp. 149177.CrossRefGoogle Scholar
[13]Kracht, M. and Wolter, F., Normal modal logics can simulate all others, this Journal, (1999), pp. 99138.Google Scholar
[14]Kurtonina, N., Categorial inference and modal logic, Journal of Logic, Language and Information, vol. 7 (1998), pp. 399418.CrossRefGoogle Scholar
[15]Lambek, J., The mathematics of sentence structure, American Mathematical Monthly, vol. 65 (1958), pp. 154170.CrossRefGoogle Scholar
[16]Marx, M., Pólos, L., and Masuch, M. (editors), Arrow Logic and Multi-Modal Logic, Studies in Logic, Language and Information, CSLI Publications, 1996.Google Scholar
[17]Roorda, D., Dyadic modalities and Lambek calculus, Diamonds and Defaults (de Rijke, M., editor), Kluwer, 1993, pp. 215253.CrossRefGoogle Scholar
[18]Thomason, S. K., Reduction of second-order logic to modal logic, Zeitschrift fur Mathemathische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 107114.CrossRefGoogle Scholar
[19]Thomason, S. K., Reduction of tense logic to modal logic II, Theoria, vol. 41 (1975), pp. 154169.CrossRefGoogle Scholar
[20]Venema, Y., A modal logic for chopping intervals, Journal of Logic and Computation, vol. 1 (1993), pp. 453476.CrossRefGoogle Scholar