Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T20:41:48.316Z Has data issue: false hasContentIssue false

A simple relationship between Buchholz's new system of ordinal notations and Takeuti's system of ordinal diagrams

Published online by Cambridge University Press:  12 March 2014

Mitsuhiro Okada*
Affiliation:
Department of Computer Science, University of Illinois, Urbana, Illinois 61801 Department of Philosophy, Keio University, Tokyo, Japan

Extract

Buchholz [4] simplified the system of ordinal notations of the Schütte school (cf. [12]), by using the notion of collapsing functions (cf. [5]). In this paper we give a simple relationship between Buchholz's new system of ordinal notations and Takeuti's system of ordinal diagrams. From this simple relationship it turns out that the structures of these two systems are very close.

We give two systems OT(I) (§1) and OT(I, A) (§2) of ordinal notations which are considered generalizations of Buchholz's original system, where I and A are well-ordered sets. The original system OT of Buchholz [4] is OT(ω + 1, {0}) in our sense. Here the set OT(I) of ordinal notations is defined as a subset of the set Od(I) of ordinal diagrams in [6], and the set OT(I, A) of ordinal notations as a subset of the set O(I, A) of ordinal diagrams in [14].

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Arai, T., An accessibility proof of ordinal diagrams in intuitionistic theories for iterated inductive definitions, Tsukuba Journal of Mathematics, vol. 8 (1984), pp. 209218.CrossRefGoogle Scholar
[2] Buchholz, W., Über Teilsystem von Θ{{g}), Archiv für Mathematische Logik und Grundlagenforschung, vol. 18 (1976/1977), pp. 8598.CrossRefGoogle Scholar
[3] Buchholz, W. and Schütte, K., Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung der -Separation und Bar-lnduktion, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 1983, pp. 99132.Google Scholar
[4] Buchholz, W., A new system of proof theoretic ordinal functions (to appear).Google Scholar
[5] Jäger, G., ρ-inaccessible ordinals, collapsing functions and a recursive notation system, Archiv für Mathematische Logik und Grundlagenforschung, vol. 24 (1984), pp. 4962.CrossRefGoogle Scholar
[6] Kino, A., On ordinal diagrams, Journal of the Mathematical Society of Japan, vol. 13 (1961), pp. 346356.CrossRefGoogle Scholar
[7] Levitz, H., On the relation between Takeuti's ordinal diagrams O(n) and Schütte's system of ordinal notations Σ(n), Intuitionism and proof theory (proceedings of the summer conference at Buffalo, New York, 1968, Kino, A., Myhill, J. and Vesley, R. E., editors), North-Holland, Amsterdam, 1970, pp. 337405.Google Scholar
[8] Levitz, H. and Schütte, K., A characterization of Takeuti's ordinal diagrams of finite order, Archiv für Mathematische Logik und Grundlagenforschung, vol. 14 (1971), pp. 7597.CrossRefGoogle Scholar
[9] Okada, M. and Takeuti, G., On the theory of quasi ordinal diagrams, Logic and combinatorics (Simpson, S. G., editor), Contemporary Mathematics, vol. 65, American Mathematical Society, Providence, Rhode Island, 1987, pp. 295308.CrossRefGoogle Scholar
[10] Okada, M., Quasi-ordinal diagrams and Kruskal type theorems on labeled finite trees (to appear).Google Scholar
[11] Pohlers, W., Ordinals connected with formal theories for transfinitely iterated inductive definitions, this Journal, vol. 43 (1978), pp. 161182.Google Scholar
[12] Schütte, K., Proof theory, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
[13] Takeuti, G., Ordinal diagrams. II, Journal of the Mathematical Society of Japan, vol. 12 (1960), pp. 385391.CrossRefGoogle Scholar
[14] Takeuti, G., Proof theory, 2nd ed., North-Holland, Amsterdam, 1987.Google Scholar