Published online by Cambridge University Press: 12 March 2014
In recent years model theorists have been studying various sheaf-theoretic notions as they apply to model theory. For quite a while however, a sheaf of structures was considered to be just a local homeomorphism between topological spaces such that each stalk Sx = p−1(x) is a model-theoretic structure and such that certain maps are continuous. Some of the model-theoretic work done with this notion of a sheaf of structures are the papers by Carson [2] and Macintyre [7]. Soon came the idea of considering a sheaf of structures not just as a collection of structures glued together in some continuous way, but rather as some sort of generalized structure. A significant model-theoretic study of sheaves in this new sense became possible only after the development of the theory of topoi. As F.W. Lawvere pointed out in [6], this represents the advance of mathematics (in our case the advance of model theory) from metaphysics to dialectics.
A topos is the rather ingenious evolution of the notion of a Grothendieck topos [13]. It provides us with the idea that an object of a topos (e.g. the topos of sheaves over a topological space) may be thought of as a generalized set. Furthermore, all first-order logical operations have an interpretation in a topos, hence we may talk about generalized structures. Angus Macintyre suggested that some of his model-theoretic results about sheaves of structures may be understood better and perhaps simplified by doing model theory inside a topos of sheaves.
This is a revised version of part of the author's Ph.D. dissertation written at Yale University. The author wishes to express his gratitude to his advisor Professor Angus Macintyre for his guidance and encouragement.