No CrossRef data available.
Article contents
SEPARABLY CLOSED FIELDS AND CONTRACTIVE ORE MODULES
Published online by Cambridge University Press: 22 December 2015
Abstract
We consider valued fields with a distinguished contractive map as valued modules over the Ore ring of difference operators. We prove quantifier elimination for separably closed valued fields with the Frobenius map, in the pure module language augmented with functions yielding components for a p-basis and a chain of subgroups indexed by the valuation group.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2015
References
REFERENCES
Azgin, S., Valued fields with contractive automorphisms and Kaplansky fields. Journal of Algebra, vol. 324 (2010), pp. 2727–2785.CrossRefGoogle Scholar
Bélair, L., and Point, F., Quantifier elimination in valued Ore modules, this Journal, vol. 75 (2010), pp. 1007–1034. Corrigendum: this Journal, vol. 77 (2012), pp. 727–728.Google Scholar
Cohn, P.M., Skew fields, Encyclopedia of Mathematics and Its Applications (Rota, G.-C., Editor), vol. 57, Cambridge University Press, Cambridge, 1995.Google Scholar
Conrad, P.F., Embedding Theorems for Abelian Groups with Valuations. American Journal of Mathematics, vol. 75 (1953), no. 1, pp. 1–29.CrossRefGoogle Scholar
Dellunde, P., Delon, F., and Point, F., The theory of modules of separably closed fields 1, this Journal, vol. 67 (2002), no. 3, pp. 997–1015.Google Scholar
Dellunde, P., Delon, F., and Point, F., The theory of modules of separably closed fields-2. Annals of Pure and Applied Logic, vol. 129 (2004), no. 1–3, pp. 181–210.CrossRefGoogle Scholar
Delon, F., Quelques propriétés des corps valués en théorie des modèles, Thèse d’état, Université Paris 7, 1982.Google Scholar
Delon, F., Idéaux et types sur les corps séparablement clos, Mémoires de la Société Mathématique de France (N.S.), vol. 33, p. 76, 1988.Google Scholar
Denef, J., and Schoutens, H., On the decidability of the existential theory of ${F_p}\left[ {\left[ t \right]} \right]$, Valuation Theory and Its Applications, Vol. II (Saskatoon, SK, 1999), Fields Institute Communications, vol. 33, American Mathematical Society, Providence, RI, 2003, pp. 43–60.Google Scholar
van den Dries, L., Quantifier Elimination for Linear Formulas Over Ordered and Valued Fields, Proceedings of the Model Theory Meeting (Univ. Brussels, Brussels/Univ. Mons, Mons, 1980), Bulletin de la Société Mathématique de Belgique, vol. 33 (1981), no. 1, pp. 19–31.Google Scholar
Fleischer, I., Maximality and ultracompleteness in valued normed modules. Proceeding of the American Mathematical Society, vol. 9 (1958), no. 1, pp. 151–157.CrossRefGoogle Scholar
Haran, D., Quantifier elimination in separably closed fields of finite imperfection degree, this Journal, vol. 53 (1988), no. 2, pp. 463–469.Google Scholar
Lazard, M., Groupes p-adiques Analytiques, Institut des Hautes Etudes Scientifiques Publications Mathematiques, vol. 26 (1965), pp. 389–603.Google Scholar
Ore, O., On a special class of polynomials. Transactions of the American Mathematical Society, vol. 35 (1933), pp. 559–584.CrossRefGoogle Scholar
Ore, O., Theory of non-commutative polynomials. Annals of Mathematics, vol. 34 (1933), pp. 480–508.CrossRefGoogle Scholar
Pal, K., Multiplicative valued difference fields, this Journal, vol. 77 (2012), no. 2, pp. 545–579.Google Scholar
Point, F., Asymptotic theory of modules of separably closed fields, this Journal, vol. 70 (2005), pp. 573–592.Google Scholar
Prest, M., The Model Theory of Modules, London Mathematical Society Lecture Notes Series, vol. 130, Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar
Rohwer, T., Valued Difference Fields as Modules Over Twisted Polynomial Rings, Ph. D Thesis, University of Illinois at Urbana-Champaign, 2003.Google Scholar
Srour, G., The independence relation in separably closed fields, this Journal, vol. 51 (1986), pp. 715–725.Google Scholar