Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T06:33:55.528Z Has data issue: false hasContentIssue false

Reducts of stable, CM-trivial theories

Published online by Cambridge University Press:  12 March 2014

Herwig Nübling*
Affiliation:
Institut für Mathematik und Informatik, Universität Greifswald, Jahnstrasse 15 A, 17487 Greifswald, Germany, E-mail: [email protected]

Abstract

We show that every reduct of a stable. CM-trivial theory of finite U-rank is CM-trivial.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Buechler, Steve, Pillay, Anand, and Wagner, Frank, Supersimple theories, Journal of the American Mathematical Society, vol. 14 (2001), pp. 109124.CrossRefGoogle Scholar
[2]Casanovas, E., The number of types in simple theories, Annals of Pure and Applied Logic, vol. 98 (1999), pp. 6986.CrossRefGoogle Scholar
[3]Evans, D., Pillay, A., and Poizat, B., Le groupe dans le groupe, Algebra i Logika, vol. 29 (1990), pp. 244252.CrossRefGoogle Scholar
[4]Hart, Bradd, Kim, Byunghan, and Pillay, Anand, Coordinatisation and canonical bases in simple theories, this Journal, vol. 65 (2000), pp. 293309.Google Scholar
[5]Hrushovski, Ehud, A new strongly minimal set, Annals of Pure and Applied Logic, vol. 62 (1993), pp. 147166.CrossRefGoogle Scholar
[6]Pillay, Anand, The geometry of forking and groups of finite Morley rank, this Journal, vol. 60 (1995), pp. 12511259.Google Scholar
[7]Pillay, Anand, Geometric stability theory, Clarendon Press, Oxford, 1996.CrossRefGoogle Scholar
[8]Pillay, Anand, A note on CM-triviality and the geometry of forking, this Journal, vol. 65 (2000), pp. 474480.Google Scholar
[9]Scheuermann, Hans, Unabhängigkeitsrelationen, Ph.D. thesis, Freiburg, 1996.Google Scholar
[10]Wagner, Frank O., Simple theories, Mathematics and its Applications, vol. 503, Kluwer Academic Publishers, Dordrecht, 2000.CrossRefGoogle Scholar