Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T22:58:44.998Z Has data issue: false hasContentIssue false

Red fields

Published online by Cambridge University Press:  12 March 2014

A. Baudisch
Affiliation:
Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 Boulevard Du 11 Novembre 1918, 69622 Villeurbanne Cedex, France. E-mail: [email protected] Institut für Mathematik, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany. E-mail: [email protected]
A. Martin-Pizarro
Affiliation:
Institut für Mathematik, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
M. Ziegler
Affiliation:
Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany. E-mail: [email protected]

Abstract

We apply Hrushovski-Fraïsseé's amalgamation procedure to obtain a theory of fields of prime characteristic of Morley rank 2 equipped with a definable additive subgroup of rank 1.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baldwin, J. and Holland, K., Constructing ω-stable structures: rank 2 fields, this Journal, vol. 65 (2000), pp. 371–391.Google Scholar
[2]Baudisch, A., Martin-Pizarro, A., and Ziegler, M., Hrushovskis fusion, preprint, 2004.Google Scholar
[3]Baudisch, A., Martin-Pizarro, A., and Ziegler, M., Fusion over a vector space, submitted, 2005.CrossRefGoogle Scholar
[4]Baudisch, A., Martin-Pizarro, A., and Ziegler, M., On fields and colours, Algebra i Logika, vol. 45 (2006), no. 2, pp. 92–105, (http://arxiv.org/math.L0/0605412).Google Scholar
[5]Hasson, A. and Hils, M., Fusion over sublanguages, this Journal, vol. 71 (2006), no. 2, pp. 361–398.Google Scholar
[6]Hrushovski, E., Strongly minimal expansions of algebraically closed fields, Israel Journal of Mathematics, vol. 79 (1992), pp. 129–151.CrossRefGoogle Scholar
[7]Hrushovski, E., A new strongly minimal set, Annals of Pure and Applied Logic, vol. 62 (1993), pp. 147–166.CrossRefGoogle Scholar
[8]Hrushovski, E. and Zil'ber, B., Zariski geometries, Bulletin of the American Mathematical Society, vol. 28 (1993), pp. 315–323.CrossRefGoogle Scholar
[9]Poizat, B., Groupes stables. Une tentative de conciliation entre la géométric algébrique et la logique mathématique, Nur al-Mantiq wal-Maŕifah, Bruno Poizat, Lyon, 1987.Google Scholar
[10]Poizat, B., Le carré de l'égalité, this Journal, vol. 64 (1999), no. 3, pp. 1338–1355.Google Scholar
[11]Poizat, B., L'égalité au cube, this Journal, vol. 66 (2001), no. 4, pp. 1647–1676.Google Scholar
[12]Ziegler, M., A note on generic types, unpublished, 2006, (http://arxiv.org/math.lo/0608433).Google Scholar