Published online by Cambridge University Press: 12 March 2014
It is well known that a decidable theory possesses a recursively presentable model. If a decidable theory also possesses a prime model, it is natural to ask if the prime model has a recursive presentation. This has been answered affirmatively for algebraically closed fields [5], and for real closed fields, Hensel fields and other fields [3]. This paper gives a positive answer for the theory of differentially closed fields, and for any decidable ℵ1-categorical theory.
The language of a theory T is denoted by L(T). All languages will be presumed countable. An x-type of T is a set of formulas with free variables x, which is consistent with T and which is maximal in this property. A formula with free variables x is complete if there is exactly one x-type containing it. A type is principal if it contains a complete formula. A countable model of T is prime if it realizes only principal types. Vaught has shown that a complete countable theory can have at most one prime model up to isomorphism.
If T is a decidable theory, then the decision procedure for T equips L(T) with an effective counting. Thus the formulas of L(T) correspond to integers. The integer a formula φ(x) corresponds to is generally called the Gödel number of φ(x) and is denoted by ⌜φ(x)⌝. The usual recursion theoretic notions defined on the set of integers can be transferred to L(T). In particular a type Γ is recursive with index e if {⌜φ⌝.; φ ∈ Γ} is a recursive set of integers with index e.