Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T05:22:40.914Z Has data issue: false hasContentIssue false

RANK 3 BINGO

Published online by Cambridge University Press:  01 December 2016

ALEXANDRE BOROVIK
Affiliation:
SCHOOL OF MATHEMATICS UNIVERSITY OF MANCHESTER MANCHESTER M13 9PL, UKE-mail: [email protected]
ADRIEN DELORO
Affiliation:
INSTITUT DE MATHÉMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE UNIVERSITÉ PIERRE ET MARIE CURIE 4 PLACE JUSSIEU 75252 PARIS CEDEX 05, FRANCEE-mail: [email protected]

Abstract

We classify irreducible actions of connected groups of finite Morley rank on abelian groups of Morley rank 3.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altınel, T., Borovik, A., and Cherlin, G., Simple Groups of Finite Morley Rank, Mathematical Surveys and Monographs , vol. 145, American Mathematical Society, Providence, RI, 2008.CrossRefGoogle Scholar
Altınel, T. and Burdges, J., On analogies between algebraic groups and groups of finite Morley rank . Journal of London Mathematical Society (2), vol. 78 (2008), no. 1, pp. 213232.CrossRefGoogle Scholar
Altınel, T. and Cherlin, G., On central extensions of algebraic groups , this Journal, vol. 64 (1999), no. 1, pp. 6874.Google Scholar
Altınel, T. and Wisons, J., Recognizing PGL3 via generic 4-transitivity . Journal of the European Mathematical Society, 2016, to appear.Google Scholar
[5] Altseimer, C., Contributions to the Classification of Tame K*-groups of Odd Type and Other Applications of 2-local Theory , PhD thesis, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, 1998.Google Scholar
Berkman, A. and Borovik, A., Groups of finite Morley rank with a pseudoreflection action . Journal of Algebra, vol. 368 (2012), pp. 237250.CrossRefGoogle Scholar
[7] Borovik, A. and Burdges, J., Definably linear groups of finite Morley rank, preprint, arXiv:0801.3958, 2008.Google Scholar
Borovik, A. and Cherlin, G., Permutation groups of finite Morley rank . Model Theory with Applications to Algebra and Analysis. Vol. 2, London Mathematical Society Lecture Note Series, vol. 350, pp. 59124, Cambridge University Press, Cambridge, 2008.Google Scholar
Borovik, A. and Nesin, A., Groups of finite Morley rank , vol. 26, Oxford Logic Guides, The Clarendon Press - Oxford University Press, New York, 1994, Oxford Science Publications.Google Scholar
Burdges, J. and Cherlin, G., Semisimple torsion in groups of finite Morley rank . Journal of Mathematical Logic, vol. 9 (2009), no. 2, pp. 183200.CrossRefGoogle Scholar
Cherlin, G., Groups of small Morley rank . Annals of Mathematical Logic, vol. 17 (1979), no. 1–2, pp. 128.Google Scholar
Cherlin, G., Good tori in groups of finite Morley rank . Journal of Group Theory, vol. 8 (2005), no. 5, pp. 613621.CrossRefGoogle Scholar
Cherlin, G. and Deloro, A., Small representations of SL2 in the finite Morley rank category , this Journal, vol. 77 (2012), no.3, pp. 919933.Google Scholar
Deloro, A., Actions of groups of finite Morley rank on small abelian groups . Bulletin of Symbolic Logic, vol. 15 (2009), no. 1, pp. 7090.Google Scholar
Deloro, A., Steinberg’s torsion theorem in the context of groups of finite Morley rank . Journal of Group Theory, vol. 12 (2009), no. 5, pp. 709710.Google Scholar
Deloro, A., p-rank and p-groups in algebraic groups . Turkish Journal of Mathematics, vol. 36 (2012), no. 4, pp. 578582.Google Scholar
Deloro, A. and Jaligot, É., Involutive automorphisms of $N_ \circ ^ \circ$ -groups . Pacific Journal of Mathematics, 2016, to appear.Google Scholar
Dynkin, E. B., The structure of semi-simple algebras . Uspekhi Matematicheskikh Nauk, vol. 2 (1947), no. 4 (20), pp. 59127.Google Scholar
Gropp, U., There is no sharp transitivity on q 6 when q is a type of Morley rank 2, this Journal, vol. 57 (1992), no. 4, pp. 11981212.Google Scholar
Hrushovski, E., Strongly minimal expansions of algebraically closed fields . Israel Journal of Mathematics, vol. 79 (1992), no. 2–3, pp. 129151.Google Scholar
Loveys, J. and Wagner, F., Le Canada semi-dry . Proceedings of the American Mathematical Society, vol. 118 (1993), no. 1, pp. 217221.Google Scholar
Macpherson, D. and Pillay, A., Primitive permutation groups of finite Morley rank. Proceedings of the London Matematical Society (3), vol. 70 (1995), no. 3, pp. 481504.CrossRefGoogle Scholar
Mustafin, Y., Structure des groupes linéaires définissables dans un corps de rang de Morley fini. Journal of Algebra, vol. 281 (2004), no. 2, pp. 753773.Google Scholar
Poizat, B., Quelques modestes remarques à propos d’une conséquence inattendue d’un résultat surprenant de Monsieur Frank Olaf Wagner , this Journal, vol. 66 (2001), no. 4, pp. 16371646.Google Scholar
Poizat, B., Stable Groups , Mathematical Surveys and Monographs, vol. 87, American Mathematical Society, Providence, RI, 2001. Translated from the 1987 French original by Moses Gabriel Klein.Google Scholar
Tent, K., Split BN-pairs of finite Morley rank . Annals of Pure and Applied Logic, vol. 119 (2003), no. 1–3, pp. 239264.Google Scholar
Timmesfeld, F. G., On the identification of natural modules for symplectic and linear groups defined over arbitrary fields . Geometriae Dedicata, vol. 35 (1990), no. 1–3, pp. 127142.CrossRefGoogle Scholar
[28] Tindzogho Ntsiri, J., Étude de quelques liens entre les groupes de rang de Morley fini et les groupes algébriques linéaires , PhD thesis, Université de Poitiers, Poitiers, 2013.Google Scholar
Wagner, F., Fields of finite Morley rank , this Journal, vol. 66 (2001), no. 2, pp. 703706.Google Scholar
Wagner, F., Groups of Morley rank 4 , this Journal, vol. 81 (2016), no. 1, pp. 6579.Google Scholar