Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:15:22.603Z Has data issue: false hasContentIssue false

A quasi-order on continuous functions

Published online by Cambridge University Press:  12 March 2014

Raphaël Carroy*
Affiliation:
Équipe de Logique Mathématique, Université Paris Diderot Paris 7, Ufr de Mathématiques Case 7012. Site Chevaleret, 75205 Paris Cedex 13France, E-mail:[email protected]

Abstract

We define a quasi-order on Borel functions from a zero-dimensional Polish space into another that both refines the order induced by the Baire hierarchy of functions and generalises the embeddability order on Borel sets. We study the properties of this quasi-order on continuous functions, and we prove that the closed subsets of a zero-dimensional Polish space are well-quasi-ordered by bi-continuous embeddability.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Duparc, J., Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank, this Journal. vol. 66 (2001), no. 1. pp. 5686.Google Scholar
[2]Fraïssé, R., Sur la comparaison des types d'ordres. Comptes Rendus Mathématique Académie des Sciences. Paris, vol. 226 (1948). pp. 13301331.Google Scholar
[3]Hertling, P., Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Ph.D. thesis. Fern Universität Hagen, 11 1996.Google Scholar
[4]Hertling, P. and Weihrauch, K., On the topological classification of degeneracies. Fachbereich Informatik, Fern Universität Hagen, 1994.Google Scholar
[5]Kechris, A. S., Classical descriptive set theory. Springer Verlag, New York, 1994.Google Scholar
[6]Laver, R., On Fraïssé's order type conjecture. The Annals of Mathematics, vol. 93 (1971). no. 1. pp. 89111.CrossRefGoogle Scholar
[7]Laver, R., Better-quasi-orderings and a class of trees. Studies in foundations and combinatorics (Rota, Gian-Carlo, editor), vol. 1, 1978, pp. 3148.Google Scholar
[8]Louveau, A. and Saint-Raymond, J., On the quasi-ordering of Borel linear orders under embeddability, this Journal, (1990), pp. 537560.Google Scholar
[9]Mansfield, R. and Weitkamp, G., Recursive aspects of descriptive set theory, ch. Bqo-theory and Fraïssé's conjecture by Simpson, S. G., pp. 124–138, pp. 124138.Google Scholar
[10]Marcone, A., Wqo and bqo theory in subsystems of second order arithmetic. Reverse mathematics, vol. 21 (2001), pp. 303330.Google Scholar
[11]Moschovakis, Y. N.. Descriptive set theory, American Mathematical Society, 2009.CrossRefGoogle Scholar
[12]Nash-Williams, C. S. J. A., On well-quasi-ordering infinite trees. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 61 (1965), p. 697.CrossRefGoogle Scholar
[13]Pouzet, M. and Sauer, N., From well-quasi-ordered sets to better-quasi-ordered sets. The Electronic Journal of Combinatorics, vol. 13 (2006), no. 1.CrossRefGoogle Scholar
[14]Solecki, S., Decomposing Borel sets and functions and the structure of Baire class 1 functions. Journal of the American Mathematical Society, vol. 11 (1998), pp. 521550.CrossRefGoogle Scholar
[15]van Engelen, F., Miller, A.W., and Steel, J., Rigid Borel sets and better quasi order theory. Contemporary mathematics, vol. 65, 1987.Google Scholar
[16]Van Wesep, R., Wadge degrees and descriptive set theory, Cabal seminar 76–77, Springer, 1978. pp. 151170.CrossRefGoogle Scholar
[17]Weihrauch, K., The TTE Interpretation of three hierarchies of omniscience principles, Fern Universität. 1992.Google Scholar