No CrossRef data available.
Article contents
Pure-injectivity and model theory for G-sets
Published online by Cambridge University Press: 12 March 2014
Abstract
In the model theory of modules the Ziegler spectrum, the space of indecomposable pure-injective modules, has played a key role. We investigate the possibility of defining a similar space in the context of G-sets where G is a group.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2009
References
REFERENCES
[1]Adámek, J. and Rosický, J., Locally presentable and accessible categories, London Mathematical Society Lecture Notes Series, vol. 189, Cambridge University Press, 1994.CrossRefGoogle Scholar
[2]Banaschewski, B., Equational compactness of G-sets, Canadian Mathematical Bulletin, vol. 17 (1974), no. 1, pp. 11–18.CrossRefGoogle Scholar
[3]Hodges, W., Model theory, Encyclopedia of Mathematics and Applications, vol. 42, Cambridge University Press, 1993.CrossRefGoogle Scholar
[4]Jensen, C. U. and Lenzing, H., Model theoretic algebra; with particular emphasis on fields, rings and modules, Gordon and Breach, 1989.Google Scholar
[5]Keisler, H. J. and Chang, C. C., Model theory, third ed., Studies in Logic and Foundations of Mathematics, vol. 73, Elsevier Science Publishers B.V., 1990.CrossRefGoogle Scholar
[6]Lane, S. Mac and Moerdijk, I., Sheaves in geometry and logic, Springer-Verlag, 1992.Google Scholar
[7]Mycielski, J. and Ryll-Nardzewski, C., Equationally compact algebras II, Fundamenta Mathematicae, vol. 61 (1968), pp. 271–281.CrossRefGoogle Scholar
[8]Prest, M., Model theory and modules, London Mathematical Society Lecture Notes Series, vol. 130, Cambridge University Press, 1988.CrossRefGoogle Scholar
[10]Rajani, R. and Prest, M., Model-theoretic imaginaries and coherent sheaves, submitted.Google Scholar
[12]Wenzel, G. H., Equational compactness, Universal algebra (Grätzer, G., editor), Springer-Verlag, second ed., 1979, pp. 417–447.Google Scholar
[13]Ziegler, M., Model theory and modules, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 149–213.CrossRefGoogle Scholar