Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T05:49:10.903Z Has data issue: false hasContentIssue false

Pure three-valued Łukasiewiczian implication

Published online by Cambridge University Press:  12 March 2014

Storrs McCall
Affiliation:
University of Pittsburgh and Makarere University College, Kampala, Uganda
R. K. Meyer
Affiliation:
University of Pittsburgh and Makarere University College, Kampala, Uganda

Extract

The matrix defining Łukasiewicz's three-valued logic, constructed in 1920 and described at length in [1], is the following:

This matrix was axiomatized in 1931 by Wajsberg (see [6]), who showed that the following axioms together with the rules of substitution and modus ponens were sufficient:

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Łukasiewicz, J., Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls, C.r. Soc. Sci. Lett. de Varsovie, Cl. III, 23 (1930), pp. 5177. English translation to appear in Polish Logic, ed. S. McCall, to be published by the Clarendon Press.Google Scholar
[2]Meredith, C. A., The dependence of an axiom of Łukasiewicz, Transactions of the American Mathematical Society, 87 (1958), p. 54.Google Scholar
[3]Rose, A. and Rosser, J. B., Fragments of many-valued statement calculi, Transactions of the American Mathematical Society, 87 (1958), pp. 153.CrossRefGoogle Scholar
[4]Schröter, K., Methoden zur Axiomatisierung beliebiger Aussagen- und Prādikatenkalküle, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 1 (1955), pp. 241251.CrossRefGoogle Scholar
[5]Tarski, A., Logic, Semantics, Metamathematics, Oxford 1956.Google Scholar
[6]Wajsberg, M., Aksjomatyzacja trójwartościowego rachunku zdán, C. r. Soc. Sci. Lett. de Varsovie, Cl. III, 24 (1931), pp. 126145. English translation to appear in Polish Logic.Google Scholar