Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T19:12:37.710Z Has data issue: false hasContentIssue false

A propositional calculus with denumerable matrix

Published online by Cambridge University Press:  12 March 2014

Michael Dummett*
Affiliation:
Oxford University

Extract

§1. In [1] Gödel proves the non-existence of a finite matrix characteristic for the intuitionist propositional calculus IC by the use of the finite matrices , where n is a natural number and

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gödel, K., Zum iniuitionistischen Aussagenkalkül, Ergebnisse eines mathematischen Kolloquiums, Heft IV (for 1931–32, pub. 1933), p. 40.Google Scholar
[2]McKinsey, J. C. C. and Tarski, A., Some theorems about the sentential calculi of Lewis and Heyting, this Journal, vol. 13 (1948), pp. 115.Google Scholar
[3]Jaśkowski, S., Recherches sur le système de la logique intuitioniste, Actes du Congrès International de Philosophie Scientifique, VI Philosophie des mathématiques, Paris (Hermann & Cie.) 1936, pp. 5861.Google Scholar
[4]Rose, G. F., Propositional calculus and realizability, Transactions of the American Mathematical Society, vol. 75 (1953), pp. 119.CrossRefGoogle Scholar
[5]Kleene, S. C., Introduction to metamathematics, Amsterdam (North Holland), Groningen (Noordhoff), New York and Toronto (Van Nostrand) 1952, x + 550 pp.Google Scholar