No CrossRef data available.
Article contents
Partially ordered interpretations
Published online by Cambridge University Press: 12 March 2014
Extract
In this paper, we shall define the “partially ordered interpretation” of a first order theory in another first order theory and state some recent results. Although an exact definition will be given in §4 below, we now give a brief outline. First of all, let us recall the “interpretations” defined by A. Tarski et al. in [17] and the “parametrical interpretations” defined by P. Hájek in [6], [7] and U. Felgner in [3]. Since “interpretations” can be considered as a special case of “parametrical interpretations”, we consider only the latter type of “interpretations”. A parametrical interpretation I of a first order language L in a consistent theory T′ (formulated in another first order language L′) consists of the following formulas:
(i) a unary formula C(p) (i.e. a formula with one designated free variable p), which is used to denote the range of parameters,
(ii) a binary formula U(p, x), which is intended to denote the pth universe for each parameter p,
(iii) an (n + 1)-ary formula Fp(p, x1 …, xn) for each n-ary predicate symbol P in L,
such that the formulas (∃p)C(p) and (∀p)(C(p)→(∃x)U(p, x)) are provable in T". Then, given a formula A in L and a parameter p, we define the interpretation Ip (A ) of A by I at p to be the formula which is obtained from A by replacing every atomic subformula P(*, …, *) in A by Fp(p, *,…,*), and relativizing every occurrence of quantifiers in A by U(p, * ). A sentence A in L is said to be I-provable in T′ if the sentence (∀p) (C(p)→ Ip(A)) is provable in T′. Then, it is obvious that every provable sentence in L is I-provable in T′. This is a basic result of “parametrical interpretations” and is used to prove the “consistency” of a theory T in L by showing that every axiom of T is I-provable in T′ when I is said to be a parametrical interpretation of T in T′. As is shown above, the word “interpretation” is used in the following three senses: interpretations of languages, interpretations of formulas and interpretations of theories. So, in this introduction we let the word “interpretation” denote “interpretation of languages”, for short.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1977