Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T18:26:06.618Z Has data issue: false hasContentIssue false

On weak completeness of intuitionistic predicate logic

Published online by Cambridge University Press:  12 March 2014

G. Kreisel*
Affiliation:
Université De Paris

Extract

Suppose the ri-placed relation symbols Pi, 1 ≦ ik, are all the non-logical constants occurring in the closed formula , also written as , of Heyting's predicate calculus (HPC). Then HPC is called complete for provided , i.e.

Here D ranges over arbitrary species, and over arbitrary (possibly incompletely defined) subspecies of ;

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Beth, E. W., Semantic construction of intuitionistic logic, Mededelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde, n.s. vol. 19, no. 11 (1956), pp. 357388.Google Scholar
[2]Brouwer, L. E. J., Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 97 (1927), pp. 6075.CrossRefGoogle Scholar
[3]Gödel, K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173198.CrossRefGoogle Scholar
[4]Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280287.CrossRefGoogle Scholar
[5]Heyting, A., Die formalen Regeln der intuitionistischen Mathematik, II, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalischmathematische Klasse (1930), pp. 158169.Google Scholar
[6]Hilbert, D. and Bernays, P., Grundlagen der Mathematik, vol. 2, Berlin (Springer) 1939, xii + 498 pp.Google Scholar
[7]Kleene, S. C., Recursive functions and intuitionistic mathematics, Proceedings of the International Congress of Mathematicians (Cambridge, Mass., USA, 1950), 1952, vol. 1, pp. 679685.Google Scholar
[8]Kleene, S. C., Introduction to metamathematics, Amsterdam (North-Holland), Groningen (Noordhoff), New York and Toronto (Van Nostrand), 1952, x + 550 pp.Google Scholar
[9]Kleene, S. C., Realizability, in Constructivity in mathematics, Amsterdam (North-Holland) 1959, pp. 285289.Google Scholar
[10]Kleene, S. C., The foundations of intuitionistic mathematics (to appear).Google Scholar
[11]Kreisel, G., Interpretation of classical analysis by means of constructive functionals of higher type, in Constructivity in mathematics, Amsterdam (North-Holland) 1959, pp. 101128.Google Scholar
[12]Kreisel, G., Elementary completeness properties of intuitionistic logic with a note on negations of prenex formulae, this Journal, vol. 23 (1958), pp. 317330; errata, vol. 23, p. vi.Google Scholar
[13]Kreisel, G., A remark on free choice sequences and the topological completeness proofs, this Journal, vol. 23 (1958), pp. 369388.Google Scholar
[14]Kreisel, G., Non-derivability of ̚(χ)A(χ)→(∃χ)̚(χ), A(χ) primitive recursive, in intuitionistic formal systems (abstract), this Journal, vol. 23 (1958), pp. 456457.Google Scholar