Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T08:08:51.167Z Has data issue: false hasContentIssue false

On two hierarchies of dimensions

Published online by Cambridge University Press:  12 March 2014

Andreas Baudisch*
Affiliation:
Akademie der Wissenschaften Der DDR, 1086 Berlin, German Democratic Republic

Abstract

Let T be a countable, complete, ω-stable, nonmultidimensional theory. By Lascar [7], in Teq there is in every dimension of T a type with Lascar rank ωα for some α. We give sufficient conditions for α to coincide with the level of that dimension in Pillay's [10] RK-hierarchy of dimensions computed in Teq. In particular, this is fulfilled for modules.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baur, W., Elimination of quantifiers for modules, Israel Journal of Mathematics, vol. 25 (1976), pp. 6470.CrossRefGoogle Scholar
[2]Bouscaren, E. and Lascar, D., Countable models of nonmultidimensional ℵ0-stable theories, this Journal, vol. 48 (1983), pp. 197205.Google Scholar
[3]Cherlin, G., Groups of small Morley rank, Annals of Mathematical Logic, vol. 17 (1979), pp. 128.CrossRefGoogle Scholar
[4]Lachlan, A. H., The spectra of ω-stable theories, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 24 (1978), pp. 129139.CrossRefGoogle Scholar
[5]Lascar, D., Ranks and definability in superstable theories, Israel Journal of Mathematics, vol. 23 (1976), pp. 5387.CrossRefGoogle Scholar
[6]Lascar, D., Ordre de Rudin-Keisler et poids dans les théories stables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 28 (1982), pp. 413430.CrossRefGoogle Scholar
[7]Lascar, D., Relation entre le rang U et le poids, Fundamenta Mathematicae, vol. 121 (1984), pp. 117123.CrossRefGoogle Scholar
[8]Lascar, D. and Poizat, B., An introduction to forking, this Journal, vol. 44 (1979), pp. 330350.Google Scholar
[9]Pillay, A., The models of a nonmultidimensional ω-stable theory, Groupe d'étude de théories stables (Bruno Poizat). Vol. 3:1980/1982, Université Paris-VI, Paris, 1983, Exposé 10.Google Scholar
[10]Pillay, A., Regular types in nonmultidimensional ω-stable theories, this Journal, vol. 49 (1984), pp. 880891.Google Scholar
[11]Pillay, A. and Prest, M., Modules and stability theory (preprint).Google Scholar
[12]Poizat, B., Le rang U selon Lascar, Groupe d'étude de théories stables (Bruno Poizat). Vol. 2: 1978/1979, Secrétariat Mathématique, Paris, 1981, Exposé 6.Google Scholar
[13]Saffe, J., Categoricity and rank, this Journal, vol. 49 (1984), pp. 13791392.Google Scholar
[14]Shelah, S., Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978.Google Scholar
[15]Lascar, D., Les groupes ω-stables de rang fini, Transactions of the American Mathematical Society, vol. 292 (1985), pp. 451462.Google Scholar
[16]Buechler, S., On nontrivial types of U-rank 1, this Journal, vol. 52 (1987), pp. 548551.Google Scholar