Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T22:45:33.830Z Has data issue: false hasContentIssue false

On the Gödel class with identity

Published online by Cambridge University Press:  12 March 2014

Warren D. Goldfarb*
Affiliation:
Harvard University, Cambridge, Massachusetts 02138

Extract

The Gödel Class is the class of prenex formulas of pure quantification theory whose prefixes have the form ∀y1y2x1 … ∃xn. The Gödel Class with Identity, or GCI, is the corresponding class of formulas of quantification theory extended by inclusion of the identity-sign “ = ”. Although the Gödel Class has long been kndwn to be solvable, the decision problem for the Gödel Class with Identity is open. In this paper we prove that there is no primitive recursive decision procedure for the GCI, or, indeed, for the subclass of the GCI containing just those formulas with prefixes ∀y1y2x.

Throughout this paper we take quantification theory to include, aside from logical signs, infinitely many k-place predicate letters for each k > 0, but no function signs or constants. Moreover, by “prenex formula” we include only those without free variables. A decision procedure for a class of formulas is a recursive function that carries a formula in the class to 0 if the formula is satisfiable and to 1 if not. A class is solvable iff there exists a decision procedure for it. A class is finitely controllable iff every satisfiable formula in the class has a finite model. Since we speak only of effectively specified classes, finite controllability implies solvability (but not conversely).

The GCI has a curious history. Gödel showed the Gödel Class (without identity) solvable in 1932 [4] and finitely controllable in 1933 [5].

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ackermann, W., Solvable cases of the decision problem, North-Holland, Amsterdam, 1954.Google Scholar
[2]Bernays, P. and Schönfinkel, M., Zum Entscheidungsproblem der mathematischen Logik, Mathematische Annalen, vol. 99 (1928), pp. 342372.CrossRefGoogle Scholar
[3]Dreben, B. and Goldfarb, W., The decision problem, Addison-Wesley, Reading, Massachusetts, 1979.Google Scholar
[4]Gödel, K., Ein Spezialfall des Entscheidungsproblems der theoretischen Logik, Ergebnisse eines Mathematischen Kolloquiums, vol. 2 (1932), pp. 2728.Google Scholar
[5]Gödel, K., Zum Entscheidungsproblem des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik, vol. 40 (1933), pp. 433443.CrossRefGoogle Scholar
[6]Goldfarb, W., The Gödel class with identity is not primitive recursively decidable, Notices of the American Mathematical Society, vol. 26 (1979), p. A390.Google Scholar
[7]Hopcroft, J. and Ullman, J., Formal languages and their relation to automata, Addison-Wesley, Reading, Massachusetts, 1969.Google Scholar
[8]Kahr, A., Moore, E. and Wang, H., Entscheidungsproblem reduced to the ∀∃∀ case, Proceedings of the National Academy of Sciences of the U.S.A., vol. 48 (1962), pp. 365377.CrossRefGoogle Scholar
[9]Kalmár, L., Über die Erfüllbarkeit derjenigen Zählausdrücke, welche in der Normalform zwei benachbarte Allzeichen enthalten, Mathematische Annalen, vol. 108 (1933), pp. 466484.CrossRefGoogle Scholar
[10]Lewis, H., Unsolvable classes of quantificational formulas, Addison-Wesley, Reading, Massachusetts, 1979.Google Scholar
[11]Peter, R., Recursive functions, Academic Press, New York, 1967.Google Scholar
[12]Ramsey, F. P., On a problem of formal logic, Proceedings of the London Mathematical Society, Series 2, vol. 30 (4) (1928), pp. 338384.Google Scholar
[13]Schütte, K., Untersuchungen zum Entscheidungsproblem der mathematischen Logik, Mathematische Annalen, vol. 109 (1934), pp. 572603.CrossRefGoogle Scholar
[14]Schütte, K., Über die Erfüllbarkeit einer Klasse von logischen Formeln, Mathematische Annalen, vol. 110 (1934), pp. 161194.CrossRefGoogle Scholar
[15]Surányi, J., Contributions to the reduction theory of the decision problem, second paper, Acta Mathematica Academiae Scientiarum Hungaricae, vol. 1 (1950), pp. 261270.CrossRefGoogle Scholar
[16]Wang, H., Proving theorems by pattern recognition. II, Bell System Technical Journal, vol. 40 (1961), pp. 141.CrossRefGoogle Scholar
[17]Wang, H., Dominoes and the AEA case of the decision problem, Proceedings of a Symposium on the Mathematical Theory of Automata, New York, 1962, Polytechnic Press, Brooklyn, 1963, pp. 2355.Google Scholar