Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T00:33:10.579Z Has data issue: false hasContentIssue false

ON SUPERSETS OF NON-LOW$_2$ SETS

Published online by Cambridge University Press:  13 September 2021

KLAUS AMBOS-SPIES
Affiliation:
INSTITUT FÜR INFORMATIK UNIVERSITÄT HEIDELBERG IM NEUENHEIMER FELD 205 HEIDELBERGD-69120,GERMANYE-mail:[email protected]:[email protected]
ROD G. DOWNEY
Affiliation:
SCHOOL OF MATHEMATICS AND STATISTICS VICTORIA UNIVERSITYWELLINGTON, P.O. BOX 600, NEW ZEALANDE-mail:[email protected]
MARTIN MONATH
Affiliation:
INSTITUT FÜR INFORMATIK UNIVERSITÄT HEIDELBERG IM NEUENHEIMER FELD 205 HEIDELBERGD-69120,GERMANYE-mail:[email protected]:[email protected]

Abstract

We solve a longstanding question of Soare by showing that if ${\mathbf d}$ is a non-low $_2$ computably enumerable degree then ${\mathbf d}$ contains a c.e. set with no r-maximal c.e. superset.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Downey, R. and Shore, R., Degree theoretical definitions of the low 2 recursively enumerable sets, this Journal, vol. 60 (1995), pp. 727756.Google Scholar
Lachlan, A., Degrees of recursively enumerable sets with no maximal supersets, this Journal, vol. 33 (1968), pp. 431443.Google Scholar
Lerman, M., Degrees of Unsolvability , Springer, New York, 1983.10.1007/978-3-662-21755-9CrossRefGoogle Scholar
Martin, D., Classes of recursively enumerable sets and degrees of unsolvability. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295310.CrossRefGoogle Scholar
Shoenfield, J., Degrees of classes or r.e. sets, this Journal, vol. 41 (1976), pp. 695696.Google Scholar
Soare, R.I., Automorphisms of the lattice of recursively enumerable sets, part II: Low sets. Annals of Mathematical Logic, vol. 22 (1982), pp. 69107.CrossRefGoogle Scholar
Soare, R.I., Recursively Enumerable Sets and Degrees, Springer, New York, 1987.CrossRefGoogle Scholar