No CrossRef data available.
Article contents
ON CONFIGURATIONS CONCERNING CARDINAL CHARACTERISTICS AT REGULAR CARDINALS
Published online by Cambridge University Press: 10 July 2020
Abstract
We study the consistency and consistency strength of various configurations concerning the cardinal characteristics $\mathfrak {s}_\theta , \mathfrak {p}_\theta , \mathfrak {t}_\theta , \mathfrak {g}_\theta , \mathfrak {r}_\theta $ at uncountable regular cardinals $\theta $ . Motivated by a theorem of Raghavan–Shelah who proved that $\mathfrak {s}_\theta \leq \mathfrak {b}_\theta $ , we explore in the first part of the paper the consistency of inequalities comparing $\mathfrak {s}_\theta $ with $\mathfrak {p}_\theta $ and $\mathfrak {g}_\theta $ . In the second part of the paper we study variations of the extender-based Radin forcing to establish several consistency results concerning $\mathfrak {r}_\theta ,\mathfrak {s}_\theta $ from hyper-measurability assumptions, results which were previously known to be consistent only from supercompactness assumptions. In doing so, we answer questions from [1], [15] and [7], and improve the large cardinal strength assumptions for results from [10] and [3].
Keywords
MSC classification
- Type
- Articles
- Information
- Copyright
- © The Association for Symbolic Logic 2020