Published online by Cambridge University Press: 12 March 2014
This note is written in reply to López-Escobar's paper [L-E] where a “sequence” of intermediate propositional systems NLCn (n ≥ 1) and corresponding implicative propositional systems NLICn (n ≥ 1) is given. We will show that the “sequence” NLCn contains three different systems only. These are the classical propositional calculus NLC1, Dummett's system NLC2 and the system NLC3. Accordingly (see [C], [Hs2], [Hs3], [B 1], [B2], [Hs4], [L-E]), the problem posed in the paper [L-E] can be formulated as follows: is NLC3a conservative extension of NLIC3? Having in mind investigations of intermediate propositional calculi that give more general results of this type (see V. I. Homič [H1], [H2], C. G. McKay [Mc], T. Hosoi [Hs 1]), in this note, using a result of Homič (Theorem 2, [H1]), we will give a positive solution to this problem.
NLICnand NLCn. If X and Y are propositional logical systems, by X ⊆ Y we mean that the set of all provable formulas of X is included in that of Y. And X = Y means that X ⊆ Y and Y ⊆ X. A(P1/B1, …, Pn/Bn) is the formula (or the sequent) obtained from the formula (or the sequent) A by substituting simultaneously B1, …, Bn for the distinct propositional variables P1, …, Pn in A.
Let Cn(n ≥ 1) be the string of the following sequents:
Having in mind that the calculi of sequents can be understood as meta-calculi for the deducibility relation in the corresponding systems of natural deduction (see [P]), the systems of natural deductions NLCn and NLICn (n ≥ 1), introduced in [L-E], can be identified with the calculi of sequents obtained by adding the sequents Cn as axioms to a sequential formulation of the Heyting propositional calculus and to a system of positive implication, respectively (see [C], [Ch], [K], [P]).