Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T15:21:13.192Z Has data issue: false hasContentIssue false

The model theory of chain-closed fields

Published online by Cambridge University Press:  12 March 2014

M. A. Dickmann*
Affiliation:
Equipe de Logique Mathématique, Université Paris-VII, 75251 Paris, France

Extract

The notion of a higher level ordering is a generalization of the usual notion of an order introduced by Becker in the study of sums of even powers in a field; see [1] for a general reference. A precise definition of an ordering of level 2n (level n in the terminology of [1]) is given in Definition 1.1(II) below.

In [1] Becker worked out the extension theory of fields with a higher level ordering and introduced the notion of a (generalized) real closure for such fields. For a survey of (the analog of) the Artin-Schreier theory of fields with a higher level ordering, see [2]. In [10] Jacob proved decidability, completeness and model-completeness (in a suitable language) for the theory of generalized real-closed fields. Jacob's results are in a sense optimal insofar as the nonuniqueness of generalized real closures (see [1, Chapter IV, Theorems 12 and 13]) prevents quantifier elimination results from holding in languages natural from an algebraic point of view.

The following remarkable fact stems from the work of Becker and Harman: a field having a proper ordering (i.e. one which is not just an order) of any level necessarily has an ordering of (exact) level 2n for each integer n ≥ 2, plus two usual orders, and, moreover, a tight connection holds between orderings of two consecutive levels (cf. [9, Corollary 1.4] and [1, Theorem 15, p. 37]).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Becker, E., Hereditarily-Pythagorean fields and orderings of higher level, Monografías de Matemática, vol. 29, Instituto de Matematica Pura e Aplicada, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, Rio de Janeiro, 1978.Google Scholar
[2]Becker, E., Extended Artin-Schreier theory of fields, Rocky Mountain Journal of Mathematics, vol. 14 (1984), pp. 881897.CrossRefGoogle Scholar
[3]Brown, R., Craven, T., and Pelling, M. J., Ordered fields satisfying Rolle's theorem, Illinois Journal of Mathematics, vol. 30 (1986), pp. 6678.CrossRefGoogle Scholar
[4]Cherlin, G. and Dickmann, M. A., Real closed rings. II: Model theory, Annals of Pure and Applied Logic, vol. 25 (1983), pp. 213231.CrossRefGoogle Scholar
[5]Delon, F., Corps et anneaux de Rolle, Proceedings of the American Mathematical Society, vol. 97 (1986), pp. 315319.CrossRefGoogle Scholar
[6]Delon, F. and Gondard, D., 17ème problème de Hilbert pour les corps chaîne-clos, Séminaire DDG “Structures algébriques ordonnées (Paris, 1986/1987).Google Scholar
[7]Gondard, D., Théorie du premier ordre des corps chaînables et des corps chaîne-clos, Comptes Rendus des Séances de l'Académie des Sciences, Série I: Mathématique, vol. 304 (1986), pp. 463465.Google Scholar
[8]Gondard, D., Axiomatisations “à la Artin-Schreier” des corps chaînables et chaîne-clos, Séminaire DDG “Structures algébriques ordonnées” (Paris, 1986/1987).Google Scholar
[9]Harman, J., Chains of higher level orderings, Ordered fields and real algebraic geometry, Contemporary Mathematics, vol. 8, American Mathematical Society, Providence, Rhode Island, 1982, pp. 141174.CrossRefGoogle Scholar
[10]Jacob, B., The model theory of generalized real closed fields, Journal für die Reine und Angewandte Mathematik, vol. 323 (1981), pp. 213220.Google Scholar
[11]Laslandes, B., Modèle-compagnons de théories de corps munis de n ordres, Comptes Rendus des Séances de l'Académie des Sciences, Série I: Mathématique, vol. 300 (1985), pp. 411414.Google Scholar
[12]Laslandes, B., Corps de Rolle portant un nombre fini d'ordres, Comptes Rendus des Séances de l'Académie des Sciences, Série I: Mathématique, vol. 302 (1986), pp. 401404.Google Scholar
[13]Laslandes, B., Théorie des modèles des corps n-ordonnés, Thèse du troisième cycle, Université Paris-VII, Paris, 1984.Google Scholar
[14]Ribenboim, P., Théorie des valuations, Presses de l'Université de Montréal, Montréal, 1964.Google Scholar
[15]Robinson, A. and Zakon, E., Elementary properties of ordered abelian groups, Transactions of the American Mathematical Society, vol. 96 (1960), pp. 222236.CrossRefGoogle Scholar
[16]Weispfenning, V., Elimination of quantifiers for certain ordered and lattice-ordered abelian groups, Bulletin de la Société Mathématique de Belgique, Série B, vol. 33 (1981), pp. 131155.Google Scholar
[17]Weispfenning, V., Quantifier elimination and decision procedures for valued fields, Models and sets (proceedings of Logic Colloquium '83), Lecture Notes in Mathematics, vol. 1103, Springer-Verlag, Berlin, 1984, pp. 419472.Google Scholar