Published online by Cambridge University Press: 12 March 2014
In this paper we continue the study of the structure of the lattice of recursively enumerable (r.e.) open subsets of a topological space. Work in this approach to effective topology began in Kalantari and Retzlaff [5] and continued in Kalantari [2], Kalantari and Leggett [3] and Kalantari and Remmel [4]. Studies in effectiveness of results in structures other than integers began with the work of Specker [17] and Lacombe [8] on effective analysis.
The renewed activity in the study of the effective content of mathematical structures owes much to Nerode's program and Metakides' and Nerode's [11], [12] work on vector spaces and fields. These studies have been extended by Kalantari, Remmel, Retzlaff, Shore and Smith. Similar studies on the effective content of other mathematical structures have been conducted. These include work on topological vector spaces, boolean algebras, linear orderings etc.
Kalantari and Retzlaff [5] began a study of effective topological spaces by considering a topological space with a countable basis ⊿ for the topology. The space X is to be fully effective; that is, the basis elements are coded into ω and the operations of intersection of basis elements and the relation of inclusion among them are both computable. An r.e. open subset of X is then represented as the union of basic open sets whose codes lie in an r.e. subset of ω.