Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T23:07:22.186Z Has data issue: false hasContentIssue false

The logic of interactive turing reduction

Published online by Cambridge University Press:  12 March 2014

Giorgi Japaridze*
Affiliation:
Villanova University, Department of Computing Sciences, 800 Lancaster Avenue, Villanova, PA 19085, USA. E-mail: [email protected] URL: http://www.csc.villanova.edu/&U0007E;japaridz/

Abstract

The paper gives a soundness and completeness proof for the implicative fragment of intuitionistic calculus with respect to the semantics of computability logic, which understands intuitionistic implication as interactive algorithmic reduction. This concept — more precisely, the associated concept of reducibility — is a generalization of Turing reducibility from the traditional, input/output sorts of problems to computational tasks of arbitrary degrees of interactivity.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blass, A., Degrees of indeterminacy of games, Fundamenta Mathematicae, vol. 77 (1972), pp. 151–166.CrossRefGoogle Scholar
[2]Blass, A., A game semantics for linear logic, Annals of Pure and Applied Logic, vol. 56 (1992), pp. 183–220.CrossRefGoogle Scholar
[3]Felscher, W., Dialogues, strategies, and intuitionistic provability, Annals of Pure and Applied Logic, vol. 28 (1985), pp. 217–254.CrossRefGoogle Scholar
[4]Girard, J. Y., Linear logic, Theoretical Computer Scince, vol. 50 (1987), pp. 1–102.Google Scholar
[5]Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280–287.CrossRefGoogle Scholar
[6]Japaridze, G., Introduction to computability logic, Annals of Pure and Applied Logic, vol. 123 (2003), pp. 1–99.CrossRefGoogle Scholar
[7]Japaridze, G., Computability logic: A formal theory of interaction, Interactive Computation: The New Paradigm (Goldin, D., Smolka, S., and Wegner, P., editors), Springer-Verlag, Berlin, 2006, pp. 183–223.Google Scholar
[8]Japaridze, G., From truth to computability I, Theoretical Computer Science, vol. 357 (2006), pp. 100–135.CrossRefGoogle Scholar
[9]Japaridze, G., Propositional computability logic I, ACM Transactions on Computational Logic, vol. 7 (2006), no. 2, pp. 302–330.Google Scholar
[10]Japaridze, G., Propositional computability logic II, ACM Transactions on Computational Logic, vol. 7 (2006), no. 2, pp. 331–362.Google Scholar
[11]Japaridze, G., From truth to computability II, Theoretical Computer Science, to appear.Google Scholar
[12]Japaridze, G., Intuitionistic computability logic, Acta Cybernetica, to appear.Google Scholar
[13]Japaridze, G., In the beginning was game semantics, Logic and Games: Foundational Perspectives (Majer, O., Pietarinen, A.-V., and Tulenheimo, T., editors), Springer-Verlag, Berlin, to appear. Preprint is available at http://arxiv.org/abs/cs.LO/0507045.Google Scholar
[14]Kleene, S. C., Introduction to Metamathematics, D. van Nostrand Company, New York, Toronto, 1952.Google Scholar
[15]Kolmogorov, A. N., Zur Deutung der intuitionistischen Logik, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 35 (1932), pp. 58–65.Google Scholar
[16]Kripke, S., Semantical analysis of intuitionistic logic, Formal Systems and Recursive Functions (Crossley, J. and Dummet, M., editors), Amsterdam, 1965, pp. 92–130.Google Scholar
[17]Lorenzen, P., Ein dialogisches Konstruktivitätskriterium, Infinitistic Methods, Proceedings of the Symposium on Foundations of Mathematics, PWN, Warsaw, 1961, pp. 193–200.Google Scholar
[18]Medvedev, Y., Interpretation of logical formulas by means of finite problems and its relation to the realiability theory, Soviet Mathematics Doklady, vol. 4 (1963), pp. 180–183.Google Scholar