Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T22:46:56.787Z Has data issue: false hasContentIssue false

Interpreting true arithmetic in the local structure of the enumeration degrees

Published online by Cambridge University Press:  12 March 2014

Hristo Ganchev
Affiliation:
Sofia University, Faculty of Mathematics and Informatics, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria, E-mail: [email protected]
Mariya Soskova
Affiliation:
Sofia University, Faculty of Mathematics and Informatics, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria, E-mail: [email protected]

Abstract

We show that the theory of the local structure of the enumeration degrees is computably isomorphic to the theory of first order arithmetic. We introduce a novel coding method, using the notion of a -pair, to code a large class of countable relations.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cooper, S. B., Partial degrees and the density problem. Part 2: The enumeration degrees of the 1.2 sets are dense, this Journal, vol. 49 (1984), pp. 503513.Google Scholar
[2]Cooper, S. B., Enumeration reducibilty, nondeterministic computations and relative computability of partial functions, Recursion theory week, Oberwolfach 1989 (Ambos-Spies, K., Muler, G., and Sacks, G. E., editors), Lecture Notes in Mathematics, vol. 1432, Springer-Verlag, Heidelberg, 1990, pp. 57110.Google Scholar
[3]Cooper, S. B., Local degree theory, Handbook of computability theory (Griffor, E., editor), Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, 1999, pp. 121154.CrossRefGoogle Scholar
[4]Friedberg, R. M. and Rogers, H. Jr., Reducibility and completeness for sets of integers, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 117125.CrossRefGoogle Scholar
[5]Ganchev, H. and Soskova, M. I., Cupping and definability in the local structure of the enumeration degrees, this Journal, vol. 77 (2012), no. 1, pp. 133158.Google Scholar
[6]Ganchev, H. and Soskova, M. I., Embedding distributive lattices in the enumeration degrees, Journal of Logic and Computation, vol. 22 (2012), no. 4, pp. 779792.CrossRefGoogle Scholar
[7]Jockusch, C. G., Semirecursive sets and positive reducibility, Transactions of the American Mathematical Society, vol. 131 (1968), pp. 420436.CrossRefGoogle Scholar
[8]Kalimullin, I. Sh., Splitting properties of n-c.e. enumeration degrees, this Journal, vol. 67 (2002), pp. 537546.Google Scholar
[9]Kalimullin, I. Sh., Definability of the jump operator in the enumeration degrees, Journal of Mathematical Logic, vol. 3 (2003), pp. 257267.CrossRefGoogle Scholar
[10]Kent, T. F., Interpreting true arithmetic in the -enumeration degrees, this Journal, vol. 75 (2010), no. 2, pp. 522550.Google Scholar
[11]Nerode, A. and Shore, R. A., Second order logic and first order theories of reducibility orderings, The Kleene Symposium (Keisler, H. J., Barwise, J., and Kunen, K., editors), Studies in Logic and the Foundations of Mathematics, vol. 101, Elsevier, 1980, pp. 181200.CrossRefGoogle Scholar
[12]Nies, A., The last question on recursively enumerable m-degrees, Algebra and Logic, vol. 33 (1994), pp. 307314.CrossRefGoogle Scholar
[13]Nies, A., Shore, R. A., and Slaman, T. A., Interpretability and definability in the recursively enumerable degrees, Proceedings of the London Mathematical Society, vol. 77 (1998), pp. 241249.CrossRefGoogle Scholar
[14]Shore, R. A., The theory of degrees below 0′, Journal of the London Mathematical Society, vol. 24 (1981), pp. 114.CrossRefGoogle Scholar
[15]Simpson, S. G., First order theory of the degrees of recursive unsolvability, Annals of Mathematics, vol. 105 (1997), pp. 121139.CrossRefGoogle Scholar
[16]Slaman, T. A. and Woodin, W., Definability in the enumeration degrees, Archive for Mathematical Logic, vol. 36 (1997), pp. 255267.CrossRefGoogle Scholar
[17]Sorbi, A., The enumeration degrees of the sets, Complexity, logic and recursion theory (Sorbi, A., editor), Marcel Dekker, 1997, pp. 303330.Google Scholar
[18]Sorbi, A., Open problems in the enumeration degrees, Computability theory and its application: Current trends and open problems (Cholak, Peter A.et al., editors), Contemporary Mathematics, vol. 257, American Mathematical Society, 2000, pp. 309320.CrossRefGoogle Scholar